Documentation Verification Report

Epi

📁 Source: Mathlib/Condensed/Light/Epi.lean

Statistics

MetricCount
DefinitionsEpi
1
Theoremsepi_iff_locallySurjective_on_lightProfinite, instPreservesEpimorphismsLightCondSetForget, instReflectsEpimorphismsLightCondSetForget, epi_iff_locallySurjective_on_lightProfinite, epi_π_app_zero_of_epi, instEpiLightCondModMapNat, instPreservesEpimorphismsFunctorDiscreteNatLightCondModLim, isLocallySurjective_iff_locallySurjective_on_lightProfinite
8
Total9

CategoryTheory

Definitions

NameCategoryTheorems
Epi 📖CompData
371 mathmath: isSeparating_iff_epi, NormalMonoCategory.epi_of_zero_cancel, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id_assoc, groupCohomology.instEpiModuleCatH2π, ShortComplex.SnakeInput.epi_L₃_g, epiOfEffectiveEpi, Limits.wideCoequalizer.π_epi, ShortComplex.ShortExact.epi_δ, preserves_epi_of_preservesColimit, epi_of_nonzero_to_simple, ShortComplex.Exact.epi_kernelLift, groupHomology.map₁_quotientGroupMk'_epi, SimplicialObject.Splitting.IndexSet.epiComp_fst, Adjunction.Triple.epi_rightToLeft_app_iff_epi_map_adj₁_unit_app, Localization.epi', SimplicialObject.Splitting.IndexSet.id_fst, Abelian.LeftResolution.epi_π_app, ModuleCat.epi_as_hom''_mkQ, epi_iff_isPushout, Abelian.epi_pullback_of_epi_f, Abelian.epi_fst_of_factor_thru_epi_mono_factorization, SimplicialObject.Splitting.IndexSet.fac_pull_assoc, PresheafOfModules.epi_iff_surjective, NatTrans.epi_iff_epi_app, Limits.coprod.epi_desc_of_epi_right, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', Under.epi_right_of_epi, HomologicalComplex.instEpiOpcyclesMapOfF, ShortComplex.LeftHomologyData.exact_iff_epi_f', Abelian.Pseudoelement.epi_of_pseudo_surjective, CommGrpCat.epi_iff_surjective, SimplicialObject.Splitting.PInfty_comp_πSummand_id, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, NormalMonoCategory.epi_of_zero_cokernel, unop_epi_of_mono, Over.epi_iff_epi_left, CondensedSet.instEpiTopCatAppCounitTopCatAdjunction, Abelian.epi_of_mono_of_epi_of_mono', Limits.biprod.epi_desc_of_epi_right, PreGaloisCategory.epi_of_nonempty_of_isConnected, RegularEpi.epi, epi_iff_surjective, Limits.colimMap_epi', Preadditive.epi_of_cokernel_iso_zero, unop_mono_iff, Profinite.effectiveEpi_tfae, Limits.kernel_not_epi_of_nonzero, ShortComplex.ShortExact.epi_g, Limits.cokernel.desc_epi, Sheaf.isLocallySurjective_iff_epi, epi_comp_iff_of_epi, op_epi_iff, Under.epi_of_epi_right, Functor.epi_map_iff_epi, SimplicialObject.Splitting.cofan_inj_eq, AlgebraicGeometry.Flat.epi_of_flat_of_surjective, Limits.biprod.epi_desc_of_epi_left, ConcreteCategory.epi_of_surjective, Condensed.epi_iff_surjective_on_stonean, AlgebraicGeometry.StructureSheaf.to_basicOpen_epi, instEpiSheafTypeToImage, Rep.instEpiModuleCatHom, Pretriangulated.Triangle.epi₂, Abelian.instEpiFactorThruImage, Abelian.tfae_epi, HomologicalComplex.instEpiFπTruncGE, NonemptyFinLinOrd.epi_iff_surjective, epi_of_epi, ShortComplex.SnakeInput.instEpiGL₀', Limits.PushoutCocone.epi_inl_of_is_pushout_of_epi, SheafOfModules.GeneratingSections.epi, Limits.image.preComp_epi_of_epi, epi_comp', Limits.Cofork.IsColimit.epi, Profinite.epi_iff_surjective, NatTrans.epi_iff_epi_app', Limits.coprod.epi_desc_of_epi_left, epi_comp, SemiNormedGrp.explicitCokernelπ.epi, HomologicalComplex.instEpiFOfHasFiniteColimits, Abelian.epi_of_epi_of_epi_of_mono', SimplicialObject.Splitting.IndexSet.eqId_iff_len_eq, HomologicalComplex.instEpiGShortComplexTruncLE, SimplicialObject.Splitting.IndexSet.ext', Limits.coequalizer.π_epi, ShortComplex.epi_of_epi_of_epi_of_epi, Abelian.epi_factorThruCoimage, SimplicialObject.Splitting.IndexSet.mk_snd_coe, Localization.epi, Abelian.epi_of_epi_of_epi_of_mono, ShortComplex.Splitting.epi_g, ModuleCat.epi_iff_surjective, HomologicalComplex.HomologySequence.instEpiMap'ComposableArrows₃OfNatNat, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, Stonean.effectiveEpiFamily_tfae, Adjunction.Quadruple.epi_leftTriple_leftToRight_iff_mono_rightTriple_rightToLeft, Endofunctor.Algebra.epi_of_epi, Sheaf.epi_of_isLocallySurjective', Preadditive.epi_iff_cancel_zero, ShortComplex.instEpiPOpcycles, ConcreteCategory.epi_iff_surjective_of_preservesPushout, ShortComplex.RightHomologyData.instEpiP, groupCohomology.cochainsMap_f_map_epi, Abelian.epi_of_epi_of_epi_of_epi, PresheafOfModules.epi_of_surjective, SimplicialObject.Splitting.IndexSet.eqId_iff_mono, Over.epi_of_epi_left, Functor.map_epi, SSet.Subcomplex.instEpiToImage, groupHomology.epi_δ_of_isZero, Sheaf.isLocallySurjective_iff_epi', instEpiId, CondensedMod.epi_iff_surjective_on_stonean, PresheafOfModules.instEpiModuleCatCarrierObjOppositeRingCatApp, Stonean.epi_iff_surjective, NonPreadditiveAbelian.instEpiFactorThruImage, CondensedSet.epi_iff_surjective_on_stonean, Abelian.LeftResolution.instEpiKaroubiAppπ', groupCohomology.epi_δ_of_isZero, SimplicialObject.Splitting.IndexSet.mk_fst, groupCohomology.instEpiModuleCatH1π, Adjunction.Quadruple.epi_leftTriple_rightToLeft_iff_mono_rightTriple_leftToRight, Functor.homologySequence_epi_shift_map_mor₁_iff, SimplicialObject.Splitting.ιSummand_comp_d_comp_πSummand_eq_zero, Abelian.epi_kernel_map_of_isPushout, ShortComplex.Exact.epi_toCycles, groupHomology.chainsMap_f_map_epi, StrongEpi.epi, Limits.biprod.map_epi, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, HomologicalComplex.instEpiHomologyπ, StructuredArrow.epi_homMk, ComplexShape.Embedding.epi_liftExtend_f_iff, ShortComplex.SnakeInput.epi_v₂₃_τ₂, Preadditive.epi_iff_surjective, Rep.instEpiModuleCatAppActionCoinvariantsMk, Functor.preservesFiniteColimits_iff_forall_exact_map_and_epi, Functor.PreservesEpimorphisms.preserves, Limits.pushout.inl_of_epi, epi_of_strongEpi, ChainComplex.isIso_descOpcycles_iff, AlgebraicGeometry.isIso_iff_isOpenImmersion, CostructuredArrow.epi_homMk, LightCondSet.instEpiTopCatAppCounitTopCatAdjunction, Abelian.epi_snd_of_isLimit, CommRingCat.epi_iff_tmul_eq_tmul, NonPreadditiveAbelian.epi_r, Limits.instEpiπ, ShortComplex.exact_iff_epi_toCycles, ShortComplex.exact_and_epi_g_iff_g_is_cokernel, Condensed.epi_iff_locallySurjective_on_compHaus, Preadditive.epi_of_isZero_cokernel, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, Preadditive.epi_iff_isZero_cokernel, GrothendieckTopology.MayerVietorisSquare.instEpiSheafAddCommGrpCatGShortComplex, groupHomology.chainsMap_id_f_map_epi, Limits.prod.map_epi, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id, Limits.epi_of_epi_image, Adjunction.Quadruple.epi_leftTriple_leftToRight_app_iff_mono_rightTriple_rightToLeft_app, groupHomology.instEpiModuleCatGH1CoresCoinf, ObjectProperty.isSeparating_iff_epi, CommRingCat.epi_iff_epi, ShortComplex.Exact.epi_f, MorphismProperty.epimorphisms.iff, SimplicialObject.Splitting.IndexSet.fac_pull, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, Abelian.LeftResolution.instEpiKaroubiAppπObjToKaroubi, kernelCokernelCompSequence.instEpiπ, Limits.PushoutCocone.epi_of_isColimitMkIdId, Limits.instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair, TopCat.Presheaf.epi_toLocalizationPresheaf, AddCommGrpCat.epi_iff_surjective, ShortComplex.quasiIso_iff_of_zeros', imageToKernel_epi_of_zero_of_mono, Subfunctor.Subpresheaf.epi_iff_range_eq_top, Pretriangulated.Triangle.mor₂_eq_zero_iff_epi₁, AlgebraicTopology.DoldKan.Γ₀_map_app, epi_iff_inl_eq_inr, Adjunction.counit_epi_of_R_faithful, instEpiMap'KernelCokernelCompSequenceOfNatNat, IsLocalization.epi, AlgebraicGeometry.SheafedSpace.epi_of_base_surjective_of_stalk_mono, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, CostructuredArrow.epi_of_epi_left, SimplicialObject.Splitting.IndexSet.id_snd_coe, Subfunctor.instEpiFunctorTypeToRange, epi_of_epi_fac, RingHom.surjective_iff_epi_and_finite, CostructuredArrow.epi_left_of_epi, ExtremalEpi.toEpi, Abelian.epi_of_mono_of_epi_of_mono, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero, AlgebraicGeometry.isIso_iff_isOpenImmersion_and_epi_base, epi_comp_iff_of_isIso, Limits.epi_coprod_to_pushout, Projective.π_epi, AddCommGrpCat.epi_iff_range_eq_top, SimplicialObject.Splitting.IndexSet.instEpiSimplexCategoryE, SimplicialObject.Splitting.cofan_inj_comp_app, Limits.IsZero.epi, AlgebraicTopology.DoldKan.Γ₀.map_app, IsPushout.epi_shortComplex_g, SimplexCategory.instEpiσ, Limits.imageSubobject_comp_le_epi_of_epi, unop_epi_iff, op_mono_iff, Abelian.epi_pullback_of_epi_g, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero_assoc, instEpiAppOfFunctor, ShortComplex.Exact.epi_f', isSeparator_iff_epi, Adjunction.Triple.epi_rightToLeft_app_iff, ShortComplex.epi_τ₂_of_exact_of_epi, Monad.algebra_epi_of_epi, GlueData.π_epi, Preadditive.epi_of_cokernel_zero, isIso_iff_mono_and_epi, CompHausLike.epi_of_surjective, SimplicialObject.Splitting.PInfty_comp_πSummand_id_assoc, IsSplitEpi.epi, ShortComplex.SnakeInput.epi_v₂₃_τ₃, PresheafOfModules.instEpiFromFreeYonedaCoproduct, CompHaus.effectiveEpi_tfae, SimplicialObject.Splitting.decomposition_id, ShortComplex.instEpiCokernelToAbelianCoimage, Pretriangulated.Triangle.mor₃_eq_zero_iff_epi₂, Limits.instEpiFst, ShortComplex.exact_and_epi_g_iff_of_iso, Over.epi_homMk, Limits.PushoutCocone.epi_inr_of_is_pushout_of_epi, groupHomology.instEpiModuleCatH1π, Sheaf.Hom.epi_of_presheaf_epi, Square.IsPushout.epi_f₂₄, Abelian.LeftResolution.instEpiKaroubiAppπ, groupHomology.instEpiModuleCatH2π, ShortComplex.exact_iff_epi_imageToKernel, groupCohomology.cochainsMap_id_f_map_epi, CompHaus.presentation.epi_π, Limits.colimitQuotientCoproduct_epi, Preadditive.epi_of_isZero_cokernel', LightCondMod.epi_iff_locallySurjective_on_lightProfinite, Pretriangulated.Triangle.epi₃, Sheaf.epi_of_isLocallySurjective, ShortComplex.SnakeInput.epi_δ, groupHomology.instEpiModuleCatH0π, Preadditive.epi_iff_isZero_cokernel', SimplicialObject.Splitting.IndexSet.epiComp_snd_coe, HomologicalComplex.epi_homologyMap_shortComplexTruncLE_g, TopCat.epi_iff_surjective, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, SimplicialObject.Split.natTransCofanInj_app, CondensedMod.epi_iff_locallySurjective_on_compHaus, HomologicalComplex.epi_homologyMap_of_epi_of_not_rel, ShortComplex.exact_iff_epi_kernel_lift, SSet.Finite.exists_epi_from_isCardinalPresentable, ComposableArrows.IsComplex.epi_cokerToKer', AddGrpCat.epi_iff_range_eq_top, AddGrpCat.epi_iff_surjective, Limits.instEpiSnd, Pretriangulated.Triangle.mor₁_eq_zero_iff_epi₃, op_epi_of_mono, Over.epi_left_of_epi, Abelian.epi_of_cokernel_π_eq_zero, CompHaus.epi_iff_surjective, Limits.IsInitial.epi_to, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero_assoc, Arrow.epi_right, TopModuleCat.instEpiCokerπ, Square.IsPushout.epi_f₃₄, Limits.coprod.map_epi, LightProfinite.epi_iff_surjective, Subobject.epi_iff_mk_eq_top, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, Functor.epi_of_epi_map, Limits.epi_image_of_epi, ShortComplex.instEpiLeftHomologyπ, Idempotents.DoldKan.Γ_map_app, Endofunctor.Coalgebra.epi_of_epi, groupHomology.instEpiModuleCatGShortComplexH0, Limits.epi_of_isColimit_parallelFamily, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, Linear.instEpiHSMulHomOfInvertible, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero, IsIso.epi_of_iso, groupHomology.H1CoresCoinfOfTrivial_g_epi, Abelian.epi_fst_of_isLimit, Limits.HasZeroObject.instEpi, Profinite.presentation.epi_π, SimplicialObject.Splitting.IndexSet.eqId_iff_eq, epi_iff_isIso_inl, SSet.Subcomplex.instEpiToRange, Limits.epi_of_target_iso_zero, Adjunction.Triple.epi_rightToLeft_app_iff_epi_map_adj₂_counit_app, SSet.Subcomplex.range_eq_top_iff, AlgebraicGeometry.Scheme.Cover.instEpiTopCatBaseCommRingCatFromGlued, ShortComplex.LeftHomologyData.instEpiπ, ShortComplex.epi_homologyMap_of_epi_cyclesMap, ProjectivePresentation.epi, epi_iff_surjective_up_to_refinements, Pretriangulated.Triangle.epi₁, Comonad.algebra_epi_of_epi, LightProfinite.instEpiAppOppositeNatπAsLimitCone, Rep.epi_iff_surjective, AlgebraicTopology.DoldKan.Γ₂_map_f_app, ShortComplex.epi_of_mono_of_epi_of_mono, Preadditive.epi_iff_surjective', ShortComplex.Exact.epi_f_iff, instEpiOfIsThin, groupHomology.epi_map_0_of_epi, ShortComplex.SnakeInput.epi_L₁_g, GrpCat.epi_iff_range_eq_top, imageToKernel_epi_of_epi_of_zero, HomologicalComplex.instEpiπTruncGE, ObjectProperty.IsCoseparating.epi_iff, Preadditive.epi_of_cancel_zero, Under.epi_homMk, HomologicalComplex.instEpiPOpcycles, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', GrpCat.epi_iff_surjective, CompHaus.effectiveEpiFamily_tfae, CondensedSet.epi_iff_locallySurjective_on_compHaus, AlgebraicGeometry.SheafedSpace.instEpiTopCatBaseHomPresheafedSpaceπ, CommGrpCat.epi_iff_range_eq_top, ProjectiveResolution.instEpiFNatπ, CostructuredArrow.epi_iff_epi_left, SimplexCategory.instEpiFactorThruImage, ShortComplex.exact_iff_epi, ObjectProperty.IsSeparating.epi_coproductFrom, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, Limits.map_π_epi, SimplicialObject.Split.cofan_inj_naturality_symm, ModuleCat.epi_iff_range_eq_top, SimplicialObject.Splitting.cofan_inj_comp_app_assoc, Profinite.effectiveEpiFamily_tfae, ShortComplex.epi_homologyMap_of_epi_cyclesMap', ShortComplex.exact_iff_epi_imageToKernel', SimplexCategory.epi_iff_surjective, Subfunctor.epi_iff_range_eq_top, AlgebraicGeometry.Scheme.instEpiCommRingCatResidue, epi_iff_isIso_inr, ModuleCat.smulShortComplex_g_epi, SplitEpi.epi, SimplicialObject.Splitting.cofan_inj_eq_assoc, instEpiFunctorWhiskerRightOfPreservesEpimorphisms, groupHomology.mapCycles₁_quotientGroupMk'_epi, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, ShortComplex.SnakeInput.epi_v₂₃_τ₁, ShortComplex.instEpiGCokernelSequence, Limits.Multicoequalizer.instEpiSigmaπ, Preadditive.instEpiNegHom, IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f, Limits.instEpiFactorThruImageSubobjectOfHasEqualizers, Functor.ReflectsEpimorphisms.reflects, Stonean.effectiveEpi_tfae, epi_of_effectiveEpi, StructuredArrow.epi_of_epi_right, JointlyReflectEpimorphisms.epi_iff, IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, SimplicialObject.Splitting.IndexSet.eqId_iff_len_le, epi_iff_forall_injective, ShortComplex.instEpiHomologyπ, Functor.homologySequence_epi_shift_map_mor₂_iff, Sheaf.instEpiAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, Limits.instEpiDescι, HomologicalComplex.instEpiFRestrictionToTruncGE', reflects_epi_of_reflectsColimit, Limits.epi_of_isColimit_cofork, Limits.pushout.inr_of_epi, Adjunction.Quadruple.epi_leftTriple_rightToLeft_app_iff_mono_rightTriple_leftToRight_app

LightCondMod

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_locallySurjective_on_lightProfinite 📖mathematicalCategoryTheory.Epi
LightCondMod
instCategoryLightCondensed
ModuleCat
ModuleCat.moduleCategory
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Sheaf.isLocallySurjective_iff_epi'
CategoryTheory.ConcreteCategory.instHasFunctorialSurjectiveInjectiveFactorization
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
ModuleCat.forget_preservesMonomorphisms
ModuleCat.forget_preservesEpimorphisms
LightProfinite.instWEqualsLocallyBijectiveCoherentTopology
ModuleCat.hasLimits'
ModuleCat.hasColimitsOfSize
AddCommGrpCat.hasColimitsOfSize
UnivLE.self
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
ModuleCat.forget_preservesLimits
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
LightProfinite.hasSheafify
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
instPreservesEpimorphismsLightCondSetForget 📖mathematicalCategoryTheory.Functor.PreservesEpimorphisms
LightCondMod
instCategoryLightCondensed
ModuleCat
ModuleCat.moduleCategory
LightCondSet
CategoryTheory.types
LightCondensed.forget
CategoryTheory.Sheaf.isLocallySurjective_iff_epi'
CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom
LightProfinite.instWEqualsLocallyBijectiveCoherentTopology
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfSize
CategoryTheory.Limits.PreservesColimits.preservesFilteredColimits
CategoryTheory.Types.instPreservesColimitsOfSizeForgetTypeHom
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
LightProfinite.hasSheafify_type
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.SheafOfTypes.balanced
CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget
CategoryTheory.ConcreteCategory.instHasFunctorialSurjectiveInjectiveFactorization
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
ModuleCat.forget_preservesMonomorphisms
ModuleCat.forget_preservesEpimorphisms
ModuleCat.hasLimits'
ModuleCat.hasColimitsOfSize
AddCommGrpCat.hasColimitsOfSize
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
ModuleCat.forget_preservesLimits
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
LightProfinite.hasSheafify
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
instReflectsEpimorphismsLightCondSetForget 📖mathematicalCategoryTheory.Functor.ReflectsEpimorphisms
LightCondMod
instCategoryLightCondensed
ModuleCat
ModuleCat.moduleCategory
LightCondSet
CategoryTheory.types
LightCondensed.forget
CategoryTheory.Sheaf.isLocallySurjective_iff_epi'
CategoryTheory.ConcreteCategory.instHasFunctorialSurjectiveInjectiveFactorization
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
ModuleCat.forget_preservesMonomorphisms
ModuleCat.forget_preservesEpimorphisms
LightProfinite.instWEqualsLocallyBijectiveCoherentTopology
ModuleCat.hasLimits'
ModuleCat.hasColimitsOfSize
AddCommGrpCat.hasColimitsOfSize
UnivLE.self
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
ModuleCat.forget_preservesLimits
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
LightProfinite.hasSheafify
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget
CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom
CategoryTheory.Limits.Types.hasLimitsOfSize
CategoryTheory.Limits.Types.hasColimitsOfSize
CategoryTheory.Limits.PreservesColimits.preservesFilteredColimits
CategoryTheory.Types.instPreservesColimitsOfSizeForgetTypeHom
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
LightProfinite.hasSheafify_type
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.SheafOfTypes.balanced

LightCondSet

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_locallySurjective_on_lightProfinite 📖mathematicalCategoryTheory.Epi
LightCondSet
instCategoryLightCondensed
CategoryTheory.types
CategoryTheory.NatTrans.app
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.Hom.val
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Sheaf.isLocallySurjective_iff_epi'
CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom
LightProfinite.instWEqualsLocallyBijectiveCoherentTopology
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfSize
CategoryTheory.Limits.PreservesColimits.preservesFilteredColimits
CategoryTheory.Types.instPreservesColimitsOfSizeForgetTypeHom
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
LightProfinite.hasSheafify_type
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.SheafOfTypes.balanced
LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits

LightCondensed

Theorems

NameKindAssumesProvesValidatesDepends On
epi_π_app_zero_of_epi 📖mathematicalCategoryTheory.Epi
LightCondMod
instCategoryLightCondensed
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Functor.epi_of_epi_map
LightCondMod.instReflectsEpimorphismsLightCondSetForget
CategoryTheory.coherentTopology.epi_π_app_zero_of_epi
LightProfinite.instPreregular
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CategoryTheory.Limits.instHasLimitsOfShapeOfHasCountableLimitsOfCountableCategory
LightProfinite.instHasCountableLimits
CategoryTheory.countableCategoryOpposite
CategoryTheory.instCountableCategoryNat
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.Concrete.surjective_π_app_zero_of_surjective_map
LightProfinite.instPreservesLimitsOfShapeOppositeNatForgetContinuousMapCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology
LightProfinite.hasSheafify_type
CategoryTheory.SheafOfTypes.balanced
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
LightProfinite.instWEqualsLocallyBijectiveCoherentTopology
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfSize
CategoryTheory.Limits.PreservesColimits.preservesFilteredColimits
CategoryTheory.Types.instPreservesColimitsOfSizeForgetTypeHom
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.Adjunction.isRightAdjoint
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Functor.map_epi
LightCondMod.instPreservesEpimorphismsLightCondSetForget
instEpiLightCondModMapNat 📖mathematicalCategoryTheory.Epi
LightCondMod
instCategoryLightCondensed
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Limits.piObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.instHasProductsOfShapeOfHasCountableProductsOfCountable
CategoryTheory.Limits.hasCountableProducts_of_hasProducts
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfSizeLightCondMod_1
instCountableNat
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Pi.map
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.instHasProductsOfShapeOfHasCountableProductsOfCountable
CategoryTheory.Limits.hasCountableProducts_of_hasProducts
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfSizeLightCondMod_1
instCountableNat
epi_π_app_zero_of_epi
CategoryTheory.Functor.ofOpSequence_map_homOfLE_succ
CategoryTheory.Limits.SequentialProduct.functorMap_epi
CategoryTheory.Abelian.hasFiniteBiproducts
instPreservesEpimorphismsFunctorDiscreteNatLightCondModLim 📖mathematicalCategoryTheory.Functor.PreservesEpimorphisms
CategoryTheory.Functor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
LightCondMod
instCategoryLightCondensed
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.category
CategoryTheory.Limits.lim
CategoryTheory.Limits.instHasProductsOfShapeOfHasCountableProductsOfCountable
CategoryTheory.Limits.hasCountableProducts_of_hasProducts
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfSizeLightCondMod_1
instCountableNat
CategoryTheory.Limits.instHasProductsOfShapeOfHasCountableProductsOfCountable
CategoryTheory.Limits.hasCountableProducts_of_hasProducts
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfSizeLightCondMod_1
instCountableNat
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.limit.hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp_assoc
CategoryTheory.epi_comp
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.IsSplitEpi.EffectiveEpi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_inv
instEpiLightCondModMapNat
CategoryTheory.instEpiAppOfFunctor
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Abelian.hasFiniteColimits
CategoryTheory.Iso.isIso_hom
isLocallySurjective_iff_locallySurjective_on_lightProfinite 📖mathematicalCategoryTheory.Sheaf.IsLocallySurjective
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
LightProfinite.instPreregular
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CategoryTheory.coherentTopology.isLocallySurjective_iff
CategoryTheory.regularTopology.isLocallySurjective_iff

---

← Back to Index