Epimorphisms of light condensed objects #
This file characterises epimorphisms in light condensed sets and modules as the locally surjective morphisms. Here, the condition of locally surjective is phrased in terms of continuous surjections of light profinite sets.
Further, we prove that the functor lim : Discrete โ โฅค LightCondMod R preserves epimorphisms.
theorem
LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite
(A : Type u')
[CategoryTheory.Category.{v', u'} A]
{FA : A โ A โ Type u_1}
{CA : A โ Type w}
[(X Y : A) โ FunLike (FA X Y) (CA X) (CA Y)]
[CategoryTheory.ConcreteCategory A FA]
[CategoryTheory.Limits.PreservesFiniteProducts (CategoryTheory.forget A)]
{X Y : LightCondensed A}
(f : X โถ Y)
:
CategoryTheory.Sheaf.IsLocallySurjective f โ โ (S : LightProfinite) (y : CategoryTheory.ToType (Y.val.obj (Opposite.op S))),
โ (S' : LightProfinite) (ฯ : S' โถ S) (_ : Function.Surjective โ(CategoryTheory.ConcreteCategory.hom ฯ)) (x :
CategoryTheory.ToType (X.val.obj (Opposite.op S'))),
(CategoryTheory.ConcreteCategory.hom (f.val.app (Opposite.op S'))) x = (CategoryTheory.ConcreteCategory.hom (Y.val.map (Opposite.op ฯ))) y
theorem
LightCondSet.epi_iff_locallySurjective_on_lightProfinite
{X Y : LightCondSet}
(f : X โถ Y)
:
CategoryTheory.Epi f โ โ (S : LightProfinite) (y : Y.val.obj (Opposite.op S)),
โ (S' : LightProfinite) (ฯ : S' โถ S) (_ : Function.Surjective โ(CategoryTheory.ConcreteCategory.hom ฯ)) (x :
X.val.obj (Opposite.op S')), f.val.app (Opposite.op S') x = Y.val.map (Opposite.op ฯ) y
theorem
LightCondMod.epi_iff_locallySurjective_on_lightProfinite
(R : Type u)
[Ring R]
{X Y : LightCondMod R}
(f : X โถ Y)
:
CategoryTheory.Epi f โ โ (S : LightProfinite) (y : โ(Y.val.obj (Opposite.op S))),
โ (S' : LightProfinite) (ฯ : S' โถ S) (_ : Function.Surjective โ(CategoryTheory.ConcreteCategory.hom ฯ)) (x :
โ(X.val.obj (Opposite.op S'))),
(CategoryTheory.ConcreteCategory.hom (f.val.app (Opposite.op S'))) x = (CategoryTheory.ConcreteCategory.hom (Y.val.map (Opposite.op ฯ))) y
theorem
LightCondensed.epi_ฯ_app_zero_of_epi
(R : Type u_1)
[Ring R]
{F : CategoryTheory.Functor โแตแต (LightCondMod R)}
{c : CategoryTheory.Limits.Cone F}
(hc : CategoryTheory.Limits.IsLimit c)
(hF : โ (n : โ), CategoryTheory.Epi (F.map (CategoryTheory.homOfLE โฏ).op))
:
CategoryTheory.Epi (c.ฯ.app (Opposite.op 0))
instance
LightCondensed.instEpiLightCondModMapNat
{R : Type u}
[Ring R]
{M N : โ โ LightCondMod R}
(f : (n : โ) โ M n โถ N n)
[โ (n : โ), CategoryTheory.Epi (f n)]
: