Documentation Verification Report

FinsetOps

πŸ“ Source: Mathlib/Data/Multiset/FinsetOps.lean

Statistics

MetricCount
Definitionsndinsert, ndinter, ndunion
3
Theoremsndinter_eq_zero, ndunion_eq, inter, ndinsert, ndinter, ndunion, ndinter_eq_left, ndunion_eq_right, attach_ndinsert, coe_ndinsert, coe_ndinter, coe_ndunion, cons_ndinter_of_mem, cons_ndunion, dedup_add, dedup_cons, disjoint_ndinsert_left, disjoint_ndinsert_right, inter_le_ndinter, le_ndinsert_self, le_ndinter, le_ndunion_left, le_ndunion_right, length_ndinsert_of_mem, length_ndinsert_of_notMem, mem_ndinsert, mem_ndinsert_of_mem, mem_ndinsert_self, mem_ndinter, mem_ndunion, ndinsert_le, ndinsert_of_mem, ndinsert_of_notMem, ndinsert_zero, ndinter_cons_of_notMem, ndinter_eq_inter, ndinter_eq_zero_iff_disjoint, ndinter_le_left, ndinter_le_right, ndinter_subset_left, ndinter_subset_right, ndunion_eq_union, ndunion_le, ndunion_le_add, ndunion_le_union, subset_ndunion_left, subset_ndunion_right, zero_ndinter, zero_ndunion
49
Total52

Multiset

Definitions

NameCategoryTheorems
ndinsert πŸ“–CompOp
23 mathmath: sup_ndinsert, Finset.insert_val, dedup_cons, ndinsert_of_notMem, attach_ndinsert, Finset.insert_def, le_ndinsert_self, mem_ndinsert, length_ndinsert_of_notMem, ndinsert_zero, coe_ndinsert, cons_ndunion, gcd_ndinsert, length_ndinsert_of_mem, disjoint_ndinsert_right, lcm_ndinsert, Nodup.ndinsert, ndinsert_le, mem_ndinsert_of_mem, ndinsert_of_mem, disjoint_ndinsert_left, mem_ndinsert_self, inf_ndinsert
ndinter πŸ“–CompOp
17 mathmath: Subset.ndinter_eq_left, Nodup.ndinter, ndinter_cons_of_notMem, coe_ndinter, ndinter_le_left, le_ndinter, inter_le_ndinter, zero_ndinter, Finset.inter_val_nd, ndinter_subset_left, ndinter_eq_inter, ndinter_subset_right, Disjoint.ndinter_eq_zero, ndinter_le_right, cons_ndinter_of_mem, ndinter_eq_zero_iff_disjoint, mem_ndinter
ndunion πŸ“–CompOp
21 mathmath: Nodup.ndunion, ndunion_le_union, zero_ndunion, ndunion_eq_union, subset_ndunion_left, dedup_add, gcd_ndunion, Disjoint.ndunion_eq, Finset.union_val_nd, cons_ndunion, mem_ndunion, coe_ndunion, ndunion_le, subset_ndunion_right, Subset.ndunion_eq_right, inf_ndunion, ndunion_le_add, sup_ndunion, le_ndunion_left, lcm_ndunion, le_ndunion_right

Theorems

NameKindAssumesProvesValidatesDepends On
attach_ndinsert πŸ“–mathematicalβ€”attach
ndinsert
Multiset
instMembership
mem_ndinsert_self
map
mem_ndinsert_of_mem
β€”mem_ndinsert_self
mem_ndinsert_of_mem
map_id
ndinsert_of_mem
mem_attach
mem_cons_self
mem_cons_of_mem
attach_cons
ndinsert_of_notMem
coe_ndinsert πŸ“–mathematicalβ€”ndinsert
ofList
List.instInsertOfDecidableEq_mathlib
β€”β€”
coe_ndinter πŸ“–mathematicalβ€”ndinter
ofList
β€”filter_congr
coe_ndunion πŸ“–mathematicalβ€”ndunion
ofList
β€”β€”
cons_ndinter_of_mem πŸ“–mathematicalMultiset
instMembership
ndinter
cons
β€”filter_cons_of_pos
cons_ndunion πŸ“–mathematicalβ€”ndunion
cons
ndinsert
β€”Quot.induction_onβ‚‚
dedup_add πŸ“–mathematicalβ€”dedup
Multiset
instAdd
ndunion
β€”Quot.induction_onβ‚‚
List.dedup_append
dedup_cons πŸ“–mathematicalβ€”dedup
cons
ndinsert
β€”dedup_cons_of_mem
ndinsert_of_mem
dedup_cons_of_notMem
ndinsert_of_notMem
disjoint_ndinsert_left πŸ“–mathematicalβ€”Disjoint
Multiset
instPartialOrder
instOrderBot
ndinsert
instMembership
β€”disjoint_cons_left
disjoint_ndinsert_right πŸ“–mathematicalβ€”Disjoint
Multiset
instPartialOrder
instOrderBot
ndinsert
instMembership
β€”disjoint_comm
disjoint_ndinsert_left
inter_le_ndinter πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInter
ndinter
β€”le_ndinter
inter_le_left
subset_of_le
inter_le_right
le_ndinsert_self πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndinsert
β€”List.sublist_insert
le_ndinter πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndinter
instHasSubset
β€”β€”
le_ndunion_left πŸ“–mathematicalNodupMultiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndunion
β€”le_iff_subset
subset_ndunion_left
le_ndunion_right πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndunion
β€”Quot.induction_onβ‚‚
List.suffix_union_right
length_ndinsert_of_mem πŸ“–mathematicalMultiset
instMembership
card
ndinsert
β€”ndinsert_of_mem
length_ndinsert_of_notMem πŸ“–mathematicalMultiset
instMembership
card
ndinsert
β€”ndinsert_of_notMem
card_cons
mem_ndinsert πŸ“–mathematicalβ€”Multiset
instMembership
ndinsert
β€”β€”
mem_ndinsert_of_mem πŸ“–mathematicalMultiset
instMembership
ndinsertβ€”mem_ndinsert
mem_ndinsert_self πŸ“–mathematicalβ€”Multiset
instMembership
ndinsert
β€”β€”
mem_ndinter πŸ“–mathematicalβ€”Multiset
instMembership
ndinter
β€”β€”
mem_ndunion πŸ“–mathematicalβ€”Multiset
instMembership
ndunion
β€”Quot.induction_onβ‚‚
ndinsert_le πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndinsert
instMembership
β€”le_trans
le_ndinsert_self
mem_of_le
mem_ndinsert_self
ndinsert_of_mem
ndinsert_of_notMem
cons_erase
cons_le_cons_iff
le_cons_of_notMem
ndinsert_of_mem πŸ“–mathematicalMultiset
instMembership
ndinsertβ€”β€”
ndinsert_of_notMem πŸ“–mathematicalMultiset
instMembership
ndinsert
cons
β€”β€”
ndinsert_zero πŸ“–mathematicalβ€”ndinsert
Multiset
instZero
instSingleton
β€”β€”
ndinter_cons_of_notMem πŸ“–mathematicalMultiset
instMembership
ndinter
cons
β€”filter_cons_of_neg
ndinter_eq_inter πŸ“–mathematicalNodupndinter
Multiset
instInter
β€”le_antisymm
le_inter
ndinter_le_left
ndinter_le_right
inter_le_ndinter
ndinter_eq_zero_iff_disjoint πŸ“–mathematicalβ€”ndinter
Multiset
instZero
Disjoint
instPartialOrder
instOrderBot
β€”subset_zero
ndinter_le_left πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndinter
β€”le_ndinter
le_rfl
ndinter_le_right πŸ“–mathematicalNodupMultiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndinter
β€”le_iff_subset
Nodup.ndinter
ndinter_subset_right
ndinter_subset_left πŸ“–mathematicalβ€”Multiset
instHasSubset
ndinter
β€”subset_of_le
ndinter_le_left
ndinter_subset_right πŸ“–mathematicalβ€”Multiset
instHasSubset
ndinter
β€”le_ndinter
le_rfl
ndunion_eq_union πŸ“–mathematicalNodupndunion
Multiset
instUnion
β€”le_antisymm
ndunion_le_union
union_le
le_ndunion_left
le_ndunion_right
ndunion_le πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndunion
instHasSubset
β€”induction_on
zero_ndunion
cons_ndunion
ndunion_le_add πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndunion
instAdd
β€”Quot.induction_onβ‚‚
List.union_sublist_append
ndunion_le_union πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ndunion
instUnion
β€”ndunion_le
subset_of_le
le_union_left
le_union_right
subset_ndunion_left πŸ“–mathematicalβ€”Multiset
instHasSubset
ndunion
β€”mem_ndunion
subset_ndunion_right πŸ“–mathematicalβ€”Multiset
instHasSubset
ndunion
β€”subset_of_le
le_ndunion_right
zero_ndinter πŸ“–mathematicalβ€”ndinter
Multiset
instZero
β€”β€”
zero_ndunion πŸ“–mathematicalβ€”ndunion
Multiset
instZero
β€”β€”

Multiset.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
ndinter_eq_zero πŸ“–mathematicalDisjoint
Multiset
Multiset.instPartialOrder
Multiset.instOrderBot
Multiset.ndinter
Multiset.instZero
β€”Multiset.ndinter_eq_zero_iff_disjoint
ndunion_eq πŸ“–mathematicalDisjoint
Multiset
Multiset.instPartialOrder
Multiset.instOrderBot
Multiset.ndunion
Multiset.instAdd
Multiset.dedup
β€”Quot.induction_onβ‚‚
List.Disjoint.union_eq

Multiset.Nodup

Theorems

NameKindAssumesProvesValidatesDepends On
inter πŸ“–mathematicalMultiset.NodupMultiset
Multiset.instInter
β€”Multiset.ndinter_eq_inter
filter
ndinsert πŸ“–mathematicalMultiset.NodupMultiset.ndinsertβ€”List.Nodup.insert
ndinter πŸ“–mathematicalMultiset.NodupMultiset.ndinterβ€”filter
ndunion πŸ“–mathematicalMultiset.NodupMultiset.ndunionβ€”Quot.induction_onβ‚‚
List.Nodup.union

Multiset.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
ndinter_eq_left πŸ“–mathematicalMultiset
Multiset.instHasSubset
Multiset.ndinterβ€”Quot.induction_onβ‚‚
Multiset.quot_mk_to_coe''
Multiset.coe_ndinter
List.Subset.inter_eq_left
ndunion_eq_right πŸ“–mathematicalMultiset
Multiset.instHasSubset
Multiset.ndunionβ€”Quot.induction_onβ‚‚
List.Subset.union_eq_right

---

← Back to Index