Preparations for defining operations on Finset. #
The operations here ignore multiplicities,
and prepare for defining the corresponding operations on Finset.
finset insert #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Multiset.mem_ndinsert_of_mem
{α : Type u_1}
[DecidableEq α]
{a b : α}
{s : Multiset α}
(h : a ∈ s)
:
theorem
Multiset.length_ndinsert_of_mem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Multiset α}
(h : a ∈ s)
:
theorem
Multiset.length_ndinsert_of_notMem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Multiset α}
(h : a ∉ s)
:
theorem
Multiset.Nodup.ndinsert
{α : Type u_1}
[DecidableEq α]
{s : Multiset α}
(a : α)
:
s.Nodup → (Multiset.ndinsert a s).Nodup
@[simp]
@[simp]
theorem
Multiset.disjoint_ndinsert_right
{α : Type u_1}
[DecidableEq α]
{a : α}
{s t : Multiset α}
:
finset union #
@[simp]
@[simp]
@[simp]
theorem
Multiset.le_ndunion_left
{α : Type u_1}
[DecidableEq α]
{s : Multiset α}
(t : Multiset α)
(d : s.Nodup)
:
@[simp]
theorem
Multiset.Disjoint.ndunion_eq
{α : Type u_1}
[DecidableEq α]
{s t : Multiset α}
(h : Disjoint s t)
:
theorem
Multiset.Subset.ndunion_eq_right
{α : Type u_1}
[DecidableEq α]
{s t : Multiset α}
(h : s ⊆ t)
:
finset inter #
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Multiset.ndinter_cons_of_notMem
{α : Type u_1}
[DecidableEq α]
{a : α}
(s : Multiset α)
{t : Multiset α}
(h : a ∉ t)
:
@[simp]
theorem
Multiset.ndinter_le_right
{α : Type u_1}
[DecidableEq α]
{s : Multiset α}
(t : Multiset α)
(d : s.Nodup)
:
@[simp]
@[simp]
theorem
Multiset.Nodup.inter
{α : Type u_1}
[DecidableEq α]
{s : Multiset α}
(t : Multiset α)
(d : s.Nodup)
:
Alias of the reverse direction of Multiset.ndinter_eq_zero_iff_disjoint.
theorem
Multiset.Subset.ndinter_eq_left
{α : Type u_1}
[DecidableEq α]
{s t : Multiset α}
(h : s ⊆ t)
: