Documentation Verification Report

PrimePow

πŸ“ Source: Mathlib/Data/Nat/Factorization/PrimePow.lean

Statistics

MetricCount
DefinitionsprodNatEquiv
1
Theoremsexists_ordCompl_eq_one, minFac_pow_factorization_eq, isPrimePow_dvd_mul, coe_prodNatEquiv_apply, prodNatEquiv_apply, prodNatEquiv_symm_apply, exists_base_eq_prime_pow_of_prime_pow_eq_base_pow, exponent_dvd_of_prime_pow_eq_pow, exponent_eq_exponent_mul_factorization_of_prime_pow_eq_base_pow, mul_divisors_filter_prime_pow, not_isPrimePow_iff_nontrivial_of_two_le, exists_ordCompl_eq_one_iff_isPrimePow, isPrimePow_iff_card_primeFactors_eq_one, isPrimePow_iff_factorization_eq_single, isPrimePow_iff_minFac_pow_factorization_eq, isPrimePow_iff_unique_prime_dvd, isPrimePow_of_minFac_pow_factorization_eq, isPrimePow_pow_iff
18
Total19

IsPrimePow

Theorems

NameKindAssumesProvesValidatesDepends On
exists_ordCompl_eq_one πŸ“–mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Nat.Prime
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”eq_or_ne
not_isPrimePow_zero
IsDomain.to_noZeroDivisors
Nat.instIsDomain
isPrimePow_iff_factorization_eq_single
em'
Nat.factorization_eq_zero_of_not_prime
Finsupp.single_eq_same
LT.lt.ne'
Nat.eq_of_factorization_eq
Nat.ordCompl_pos
Nat.factorization_ordCompl
Finsupp.erase_single
Nat.factorization_one
minFac_pow_factorization_eq πŸ“–mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Monoid.toNatPow
Nat.instMonoid
Nat.minFac
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”Nat.Prime.pow_minFac
Nat.prime_iff
LT.lt.ne'
Nat.Prime.factorization_pow
Finsupp.single_eq_same

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
exists_base_eq_prime_pow_of_prime_pow_eq_base_pow πŸ“–β€”Prime
Monoid.toNatPow
instMonoid
β€”β€”exponent_dvd_of_prime_pow_eq_pow
pow_left_injective
pow_mul'
exponent_dvd_of_prime_pow_eq_pow πŸ“–β€”Prime
Monoid.toNatPow
instMonoid
β€”β€”Dvd.intro
exponent_eq_exponent_mul_factorization_of_prime_pow_eq_base_pow
exponent_eq_exponent_mul_factorization_of_prime_pow_eq_base_pow πŸ“–mathematicalPrime
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”Finsupp.single_eq_same
factorization_pow
Prime.factorization_pow
mul_divisors_filter_prime_pow πŸ“–mathematicalβ€”Finset.filter
IsPrimePow
instCommMonoidWithZero
instDecidableIsPrimePowNat
divisors
Finset
Finset.instUnion
β€”eq_or_ne
Finset.filter.congr_simp
mul_one
divisors_zero
Finset.filter_empty
divisors_one
Finset.empty_union
Finset.filter_singleton
MulZeroClass.mul_zero
Finset.union_empty
Finset.ext
Coprime.isPrimePow_dvd_mul
not_isPrimePow_iff_nontrivial_of_two_le πŸ“–mathematicalβ€”IsPrimePow
instCommMonoidWithZero
Finset.Nontrivial
primeFactors
β€”isPrimePow_iff_card_primeFactors_eq_one
Finset.one_lt_card_iff_nontrivial

Nat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimePow_dvd_mul πŸ“–β€”IsPrimePow
Nat.instCommMonoidWithZero
β€”β€”eq_or_ne
MulZeroClass.zero_mul
MulZeroClass.mul_zero
isPrimePow_nat_iff
Nat.Prime.pow_dvd_iff_le_factorization
mul_ne_zero
IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.factorization_mul
Finsupp.notMem_support_iff
not_and_or
Finset.mem_inter
Disjoint.le_bot
disjoint_primeFactors
zero_add
Nat.instCanonicallyOrderedAdd
add_zero
Dvd.dvd.trans
dvd_mul_right
dvd_refl
dvd_mul_left

Nat.Primes

Definitions

NameCategoryTheorems
prodNatEquiv πŸ“–CompOp
3 mathmath: prodNatEquiv_symm_apply, prodNatEquiv_apply, coe_prodNatEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_prodNatEquiv_apply πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
DFunLike.coe
Equiv
Nat.Primes
EquivLike.toFunLike
Equiv.instEquivLike
prodNatEquiv
Monoid.toNatPow
Nat.instMonoid
Nat.Prime
β€”β€”
prodNatEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Nat.Primes
IsPrimePow
Nat.instCommMonoidWithZero
EquivLike.toFunLike
Equiv.instEquivLike
prodNatEquiv
Monoid.toNatPow
Nat.instMonoid
Nat.Prime
Prime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Nat.prime_iff
Subtype.prop
β€”β€”
prodNatEquiv_symm_apply πŸ“–mathematicalIsPrimePow
Nat.instCommMonoidWithZero
DFunLike.coe
Equiv
Nat.Primes
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodNatEquiv
Nat.Prime
Nat.minFac
Nat.minFac_prime
IsPrimePow.ne_one
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_ordCompl_eq_one_iff_isPrimePow πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
Nat.Prime
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”IsPrimePow.exists_ordCompl_eq_one
isPrimePow_nat_iff
Nat.ordProj_dvd
Mathlib.Tactic.Contrapose.contraposeβ‚‚
pow_zero
isPrimePow_iff_card_primeFactors_eq_one πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
Finset.card
Nat.primeFactors
β€”Nat.instCanonicallyOrderedAdd
isPrimePow_iff_factorization_eq_single πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
Nat.factorization
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
β€”isPrimePow_nat_iff
Nat.Prime.factorization_pow
Nat.factorization_zero
LT.lt.ne'
Nat.eq_pow_of_factorization_eq_single
Nat.prime_of_mem_primeFactors
Finsupp.mem_support_iff
Finsupp.single_eq_same
isPrimePow_iff_minFac_pow_factorization_eq πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
Monoid.toNatPow
Nat.instMonoid
Nat.minFac
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”IsPrimePow.minFac_pow_factorization_eq
isPrimePow_of_minFac_pow_factorization_eq
isPrimePow_iff_unique_prime_dvd πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
ExistsUnique
Nat.Prime
β€”isPrimePow_nat_iff
dvd_pow_self
LT.lt.ne'
Nat.prime_dvd_prime_iff_eq
Nat.Prime.dvd_of_dvd_pow
eq_or_ne
Nat.prime_two
dvd_zero
Nat.prime_three
Nat.Prime.factorization_pos_of_dvd
Nat.ordProj_dvd
Nat.dvd_of_primeFactorsList_subperm
Nat.Prime.primeFactorsList_pow
Nat.mem_primeFactorsList
Nat.primeFactorsList_count_eq
isPrimePow_of_minFac_pow_factorization_eq πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.minFac
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
IsPrimePow
Nat.instCommMonoidWithZero
β€”eq_or_ne
Nat.factorization_zero
pow_zero
Nat.Prime.prime
Nat.minFac_prime
Nat.instCanonicallyOrderedAdd
isPrimePow_pow_iff πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
Monoid.toNatPow
Nat.instMonoid
β€”existsUnique_congr

---

← Back to Index