Documentation

Mathlib.Data.Nat.Factorization.PrimePow

Prime powers and factorizations #

This file deals with factorizations of prime powers.

An equivalent definition for prime powers: n is a prime power iff there is a unique prime dividing it.

theorem Nat.Coprime.isPrimePow_dvd_mul {n a b : } (hab : a.Coprime b) (hn : IsPrimePow n) :
n a * b n a n b
theorem Nat.mul_divisors_filter_prime_pow {a b : } (hab : a.Coprime b) :
{d(a * b).divisors | IsPrimePow d} = {da.divisors b.divisors | IsPrimePow d}

The canonical equivalence between pairs (p, k) with p a prime and k : ℕ and the set of prime powers given by (p, k) ↦ p^(k+1).

Equations
    Instances For
      @[simp]
      theorem Nat.Primes.prodNatEquiv_apply (p : Primes) (k : ) :
      prodNatEquiv (p, k) = p ^ (k + 1),
      @[simp]
      theorem Nat.Primes.coe_prodNatEquiv_apply (p : Primes) (k : ) :
      (prodNatEquiv (p, k)) = p ^ (k + 1)
      theorem Nat.exponent_dvd_of_prime_pow_eq_pow {p a m n : } (hp : Prime p) (h : p ^ m = a ^ n) :
      n m
      theorem Nat.exists_base_eq_prime_pow_of_prime_pow_eq_base_pow {p a m n : } (hp : Prime p) (hn : n 0) (h : p ^ m = a ^ n) :
      ∃ (k : ), a = p ^ k