Documentation

Mathlib.Data.Nat.PrimeFin

Prime numbers #

This file contains some results about prime numbers which depend on finiteness of sets.

The prime factors of a natural number as a finset.

Equations
    Instances For
      theorem Nat.Prime.mem_primeFactors {n p : } (hp : Prime p) (hdvd : p n) (hn : n 0) :
      theorem Nat.Prime.mem_primeFactors' {n p : } (hp : Prime p) (hdvd : p n) [NeZero n] :

      A version of Nat.Prime.mem_primeFactors using [NeZero n] instead of an explicit argument.

      theorem Nat.primeFactors_mono {m n : } (hmn : m n) (hn : n 0) :
      theorem Nat.dvd_of_mem_primeFactors {n p : } (hp : p n.primeFactors) :
      p n
      theorem Nat.pos_of_mem_primeFactors {n p : } (hp : p n.primeFactors) :
      0 < p
      theorem Nat.primeFactors_mul {a b : } (ha : a 0) (hb : b 0) :
      @[simp]
      theorem Nat.disjoint_primeFactors {a b : } (ha : a 0) (hb : b 0) :
      theorem Nat.primeFactors_prime_pow {k p : } (hk : k 0) (hp : Prime p) :

      The only prime divisor of positive prime power p^k is p itself