Documentation Verification Report

PrimeFin

πŸ“ Source: Mathlib/Data/Nat/PrimeFin.lean

Statistics

MetricCount
DefinitionsprimeFactors
1
Theoremsdisjoint_primeFactors, primeFactors_mul, mem_primeFactors, mem_primeFactors', mem_primeFactors_self, primeFactors, countable, infinite, disjoint_primeFactors, dvd_of_mem_primeFactors, infinite_setOf_prime, le_of_mem_primeFactors, mem_primeFactors, mem_primeFactors_iff_mem_primeFactorsList, mem_primeFactors_of_ne_zero, nonempty_primeFactors, pos_of_mem_primeFactors, primeFactors_eq_empty, primeFactors_gcd, primeFactors_mono, primeFactors_mul, primeFactors_one, primeFactors_pow, primeFactors_pow_succ, primeFactors_prime_pow, primeFactors_zero, prime_of_mem_primeFactors, toFinset_factors
28
Total29

Nat

Definitions

NameCategoryTheorems
primeFactors πŸ“–CompOp
62 mathmath: prod_primeFactors_gcd_mul_prod_primeFactors_mul, isPrimePow_iff_card_primeFactors_eq_one, DirichletCharacter.LFunction_changeLevel, primeFactors_subset_of_mem_smoothNumbers, primeFactors_pow_succ, prod_primeFactors_of_squarefree, totient_eq_mul_prod_factors, prod_primeFactors_dvd, primeFactors_mono, DirichletCharacter.LSeries_changeLevel, primeFactors_eq_to_filter_divisors_prime, primeFactors_div_gcd, pairwise_coprime_pow_primeFactors_factorization, support_factorization, IsCyclotomicExtension.Rat.discr, primeFactors_gcd, DirichletCharacter.LFunctionTrivChar_eq_mul_riemannZeta, ArithmeticFunction.IsMultiplicative.prod_primeFactors, primeFactors_zero, mem_primeFactors_of_ne_zero, ArithmeticFunction.sigma_eq_prod_primeFactors_sum_range_factorization_pow_mul, toFinset_factors, isNilpotent_of_finite_tfae, ArithmeticFunction.prodPrimeFactors_apply, card_divisors, IsCyclotomicExtension.Rat.natAbs_discr, mem_factoredNumbers_iff_primeFactors_subset, Prime.mem_primeFactors_self, primeFactors_one, Prime.mem_primeFactors, prod_pow_primeFactors_factorization, primeFactors_subset_of_mem_factoredNumbers, prod_factorization_eq_prod_primeFactors, primeFactors_eq_empty, mem_primeFactors_iff_mem_primeFactorsList, sum_divisors, nonempty_primeFactors, prod_primeFactors_prod_factorization, disjoint_primeFactors, ArithmeticFunction.IsMultiplicative.prodPrimeFactors_one_add_of_squarefree, UniqueFactorizationMonoid.primeFactors_eq_natPrimeFactors, mem_smoothNumbers_iff_primeFactors_subset, primeFactors_pow, primeFactors_mul, DirichletCharacter.LFunctionTrivChar_residue_one, Coprime.disjoint_primeFactors, ArithmeticFunction.carmichael_factorization, primeFactors_filter_dvd_of_dvd, Prime.primeFactors, Prime.mem_primeFactors', totient_eq_div_primeFactors_mul, primeFactors_prime_pow, not_isPrimePow_iff_nontrivial_of_two_le, primeFactors_prod, ArithmeticFunction.IsMultiplicative.prodPrimeFactors_one_sub_of_squarefree, mem_primeFactors, Coprime.primeFactors_mul, sum_primeFactors_gcd_add_sum_primeFactors_mul, prime_pow_pow_totient_ediv_prod, prod_primeFactors_pow_totient_ediv_dvd, totient_mul_prod_primeFactors, BoundingSieve.prod_primeFactors_nu

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_primeFactors πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
primeFactors
β€”β€”
dvd_of_mem_primeFactors πŸ“–β€”Finset
Finset.instMembership
primeFactors
β€”β€”mem_primeFactors
infinite_setOf_prime πŸ“–mathematicalβ€”Set.Infinite
setOf
Prime
β€”Set.infinite_of_not_bddAbove
SemilatticeSup.instIsDirectedOrder
not_bddAbove_setOf_prime
le_of_mem_primeFactors πŸ“–β€”Finset
Finset.instMembership
primeFactors
β€”β€”Ne.bot_lt
mem_primeFactors
dvd_of_mem_primeFactors
mem_primeFactors πŸ“–mathematicalβ€”Finset
Finset.instMembership
primeFactors
Prime
β€”β€”
mem_primeFactors_iff_mem_primeFactorsList πŸ“–mathematicalβ€”Finset
Finset.instMembership
primeFactors
primeFactorsList
β€”β€”
mem_primeFactors_of_ne_zero πŸ“–mathematicalβ€”Finset
Finset.instMembership
primeFactors
Prime
β€”β€”
nonempty_primeFactors πŸ“–mathematicalβ€”Finset.Nonempty
primeFactors
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
primeFactors_eq_empty
pos_of_mem_primeFactors πŸ“–β€”Finset
Finset.instMembership
primeFactors
β€”β€”Prime.pos
prime_of_mem_primeFactors
primeFactors_eq_empty πŸ“–mathematicalβ€”primeFactors
Finset
Finset.instEmptyCollection
β€”Mathlib.Tactic.Contrapose.contrapose₁
exists_prime_and_dvd
mem_primeFactors
primeFactors_zero
primeFactors_one
primeFactors_gcd πŸ“–mathematicalβ€”primeFactors
Finset
Finset.instInter
β€”β€”
primeFactors_mono πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
primeFactors
β€”Dvd.dvd.trans
primeFactors_mul πŸ“–mathematicalβ€”primeFactors
Finset
Finset.instUnion
β€”Finset.ext
mem_primeFactorsList_mul
primeFactors_one πŸ“–mathematicalβ€”primeFactors
Finset
Finset.instEmptyCollection
β€”Finset.ext
Prime.ne_one
primeFactors_pow πŸ“–mathematicalβ€”primeFactors
Monoid.toNatPow
instMonoid
β€”primeFactors_pow_succ
primeFactors_pow_succ πŸ“–mathematicalβ€”primeFactors
Monoid.toNatPow
instMonoid
β€”eq_or_ne
zero_pow
primeFactors_zero
zero_add
pow_one
primeFactors_mul
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Finset.union_idempotent
primeFactors_prime_pow πŸ“–mathematicalPrimeprimeFactors
Monoid.toNatPow
instMonoid
Finset
Finset.instSingleton
β€”primeFactors_pow
Prime.primeFactors
primeFactors_zero πŸ“–mathematicalβ€”primeFactors
Finset
Finset.instEmptyCollection
β€”Finset.ext
prime_of_mem_primeFactors πŸ“–mathematicalFinset
Finset.instMembership
primeFactors
Primeβ€”mem_primeFactors
toFinset_factors πŸ“–mathematicalβ€”List.toFinset
primeFactorsList
primeFactors
β€”β€”

Nat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_primeFactors πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Nat.primeFactors
β€”List.disjoint_toFinset_iff_disjoint
Nat.coprime_primeFactorsList_disjoint
primeFactors_mul πŸ“–mathematicalβ€”Nat.primeFactors
Finset
Finset.instUnion
β€”List.toFinset.ext
Nat.mem_primeFactorsList_mul_of_coprime
List.toFinset_union

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
mem_primeFactors πŸ“–mathematicalNat.PrimeFinset
Finset.instMembership
Nat.primeFactors
β€”Nat.mem_primeFactors
mem_primeFactors' πŸ“–mathematicalNat.PrimeFinset
Finset.instMembership
Nat.primeFactors
β€”mem_primeFactors
mem_primeFactors_self πŸ“–mathematicalNat.PrimeFinset
Finset.instMembership
Nat.primeFactors
β€”mem_primeFactors
ne_zero
primeFactors πŸ“–mathematicalNat.PrimeNat.primeFactors
Finset
Finset.instSingleton
β€”Nat.primeFactorsList_prime
List.toFinset_cons
Finset.instLawfulSingleton

Nat.Primes

Theorems

NameKindAssumesProvesValidatesDepends On
countable πŸ“–mathematicalβ€”Countable
Nat.Primes
β€”coe_nat_injective
infinite πŸ“–mathematicalβ€”Infinite
Nat.Primes
β€”Set.Infinite.to_subtype
Nat.infinite_setOf_prime

---

← Back to Index