PrimeFin
π Source: Mathlib/Data/Nat/PrimeFin.lean
Statistics
Nat
Definitions
Theorems
Nat.Coprime
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
disjoint_primeFactors π | mathematical | β | DisjointFinsetFinset.partialOrderFinset.instOrderBotNat.primeFactors | β | List.disjoint_toFinset_iff_disjointNat.coprime_primeFactorsList_disjoint |
primeFactors_mul π | mathematical | β | Nat.primeFactorsFinsetFinset.instUnion | β | List.toFinset.extNat.mem_primeFactorsList_mul_of_coprimeList.toFinset_union |
Nat.Prime
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mem_primeFactors π | mathematical | Nat.Prime | FinsetFinset.instMembershipNat.primeFactors | β | Nat.mem_primeFactors |
mem_primeFactors' π | mathematical | Nat.Prime | FinsetFinset.instMembershipNat.primeFactors | β | mem_primeFactors |
mem_primeFactors_self π | mathematical | Nat.Prime | FinsetFinset.instMembershipNat.primeFactors | β | mem_primeFactorsne_zero |
primeFactors π | mathematical | Nat.Prime | Nat.primeFactorsFinsetFinset.instSingleton | β | Nat.primeFactorsList_primeList.toFinset_consFinset.instLawfulSingleton |
Nat.Primes
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
countable π | mathematical | β | CountableNat.Primes | β | coe_nat_injective |
infinite π | mathematical | β | InfiniteNat.Primes | β | Set.Infinite.to_subtypeNat.infinite_setOf_prime |
---