Documentation Verification Report

Basic

📁 Source: Mathlib/Data/PNat/Basic.lean

Statistics

MetricCount
DefinitionspnatIsoNat, caseStrongInductionOn, coeAddHom, coeMonoidHom, instCancelCommMonoid, instCommMonoid, instOrderBot, instSub, recOn, instAddCommSemigroupPNat, instAddLeftCancelSemigroupPNat, instAddPNat, instAddRightCancelSemigroupPNat, instDistribPNat, instMulPNat
15
TheoremssuccPNat_inj, succPNat_injective, succPNat_le_succPNat, succPNat_lt_succPNat, succPNat_mono, succPNat_strictMono, pnatIsoNat_apply, pnatIsoNat_symm_apply, addLeftMono, addLeftReflectLE, addLeftReflectLT, addLeftStrictMono, add_coe, add_one, add_one_le_iff, add_sub, add_sub_of_lt, bot_eq_one, coeAddHom_apply, coe_coeMonoidHom, coe_inj, div_add_mod, div_add_mod', dvd_antisymm, dvd_iff, dvd_iff', dvd_one_iff, exists_eq_succ_of_ne_one, instIsOrderedCancelMonoid, instWellFoundedLT, le_of_dvd, le_one_iff, le_sub_one_of_lt, lt_add_left, lt_add_one_iff, lt_add_right, lt_succ_self, mk_ofNat, modDivAux_spec, mod_add_div, mod_add_div', mod_le, mul_coe, mul_div_exact, natPred_add_one, natPred_inj, natPred_injective, natPred_le_natPred, natPred_lt_natPred, natPred_monotone, natPred_strictMono, ofNat_inj, ofNat_le_ofNat, ofNat_lt_ofNat, one_add_natPred, one_lt_of_lt, pos_of_div_pos, pow_coe, recOn_one, recOn_succ, sub_add_of_lt, sub_coe, sub_le, val_ofNat
64
Total79

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
succPNat_inj 📖mathematicalsuccPNatsuccPNat_injective
succPNat_injective 📖mathematicalPNat
succPNat
StrictMono.injective
succPNat_strictMono
succPNat_le_succPNat 📖mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
succPNat
StrictMono.le_iff_le
succPNat_strictMono
succPNat_lt_succPNat 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
succPNat
StrictMono.lt_iff_lt
succPNat_strictMono
succPNat_mono 📖mathematicalMonotone
PNat
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
succPNat
StrictMono.monotone
succPNat_strictMono
succPNat_strictMono 📖mathematicalStrictMono
PNat
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
succPNat

OrderIso

Definitions

NameCategoryTheorems
pnatIsoNat 📖CompOp
2 mathmath: pnatIsoNat_symm_apply, pnatIsoNat_apply

Theorems

NameKindAssumesProvesValidatesDepends On
pnatIsoNat_apply 📖mathematicalDFunLike.coe
RelIso
PNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
RelIso.instFunLike
pnatIsoNat
PNat.natPred
pnatIsoNat_symm_apply 📖mathematicalDFunLike.coe
OrderIso
PNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instFunLikeOrderIso
symm
pnatIsoNat
Nat.succPNat

PNat

Definitions

NameCategoryTheorems
caseStrongInductionOn 📖CompOp
coeAddHom 📖CompOp
1 mathmath: coeAddHom_apply
coeMonoidHom 📖CompOp
1 mathmath: coe_coeMonoidHom
instCancelCommMonoid 📖CompOp
instCommMonoid 📖CompOp
27 mathmath: instIsOrderedCancelMonoid, PrimeMultiset.prod_dvd_prod, factorMultiset_le_iff, PrimeMultiset.prod_dvd_iff', Prime.not_dvd_one, dvd_lcm_right, gcd_dvd_right, dvd_one_iff, gcd_eq_right_iff_dvd, count_factorMultiset, factorMultiset_le_iff', dvd_iff, exists_prime_and_dvd, PrimeMultiset.prod_dvd_iff, dvd_lcm_left, PrimeMultiset.prod_ofPNatMultiset, gcd_dvd_left, dvd_prime, factorMultiset_pow, pow_coe, dvd_iff', Mathlib.Tactic.Ring.instCSLiftValPNatNatHPow, mem_factorMultiset, PrimeMultiset.prod_smul, Finset.PNat.coe_prod, gcd_eq_left_iff_dvd, coe_coeMonoidHom
instOrderBot 📖CompOp
1 mathmath: bot_eq_one
instSub 📖CompOp
7 mathmath: Mathlib.Tactic.PNatToNat.sub_coe, sub_coe, add_sub, le_sub_one_of_lt, sub_add_of_lt, sub_le, add_sub_of_lt
recOn 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
addLeftMono 📖mathematicalAddLeftMono
PNat
instAddPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Positive.addLeftMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
addLeftReflectLE 📖mathematicalAddLeftReflectLE
PNat
instAddPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Positive.addLeftReflectLE
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
contravariant_lt_of_covariant_le
addLeftReflectLT 📖mathematicalAddLeftReflectLT
PNat
instAddPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Positive.addLeftReflectLT
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
addLeftStrictMono 📖mathematicalAddLeftStrictMono
PNat
instAddPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Positive.addLeftStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
add_coe 📖mathematicalval
PNat
instAddPNat
add_one 📖mathematicalPNat
instAddPNat
instOfNatPNatOfNeZeroNat
Nat.succPNat
val
add_one_le_iff 📖mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instAddPNat
instOfNatPNatOfNeZeroNat
Preorder.toLT
add_sub 📖mathematicalPNat
instSub
instAddPNat
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
sub_add_of_lt
lt_add_left
add_sub_of_lt 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instAddPNat
instSub
eq
add_coe
sub_coe
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
LT.lt.le
bot_eq_one 📖mathematicalBot.bot
PNat
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instOrderBot
instOfNatPNatOfNeZeroNat
coeAddHom_apply 📖mathematicalDFunLike.coe
AddHom
PNat
instAddPNat
AddHom.funLike
coeAddHom
val
coe_coeMonoidHom 📖mathematicalDFunLike.coe
MonoidHom
PNat
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instCommMonoid
Nat.instMulOneClass
MonoidHom.instFunLike
coeMonoidHom
val
coe_inj 📖mathematicalvalSetCoe.ext_iff
div_add_mod 📖mathematicalval
div
mod
add_comm
mod_add_div
div_add_mod' 📖mathematicaldiv
val
mod
mul_comm
div_add_mod
dvd_antisymm 📖PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
LE.le.antisymm
le_of_dvd
dvd_iff 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
val
dvd_mul_right
MulZeroClass.mul_zero
mul_coe
mk_coe
dvd_iff' 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
mod
dvd_iff
eq
mod_coe
LT.lt.ne
pos
dvd_one_iff 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
instOfNatPNatOfNeZeroNat
dvd_antisymm
one_dvd
dvd_refl
exists_eq_succ_of_ne_one 📖mathematicalPNat
instAddPNat
instOfNatPNatOfNeZeroNat
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Nat.instZeroLEOneClass
instIsOrderedCancelMonoid 📖mathematicalIsOrderedCancelMonoid
PNat
instCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Positive.isOrderedCancelMonoid
Nat.instIsStrictOrderedRing
instWellFoundedLT 📖mathematicalWellFoundedLT
PNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
WellFoundedRelation.isWellFounded
le_of_dvd 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
dvd_iff'
mod_le
le_one_iff 📖mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instOfNatPNatOfNeZeroNat
le_bot_iff
le_sub_one_of_lt 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Preorder.toLE
instSub
instOfNatPNatOfNeZeroNat
coe_le_coe
sub_coe
LE.le.trans
LT.lt.le
le_of_not_gt
lt_add_left 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instAddPNat
lt_add_of_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
lt_add_one_iff 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instAddPNat
instOfNatPNatOfNeZeroNat
Preorder.toLE
lt_add_right 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instAddPNat
LT.lt.trans_eq
lt_add_left
add_comm
lt_succ_self 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Nat.succPNat
val
mk_ofNat 📖mathematicalPNat
instOfNatPNatOfNeZeroNat
MulZeroClass.toZero
Nat.instMulZeroClass
LT.lt.ne'
Nat.instPreorder
modDivAux_spec 📖mathematicalval
PNat
modDivAux
zero_add
add_comm
mod_add_div 📖mathematicalval
mod
div
ne_zero
zero_add
MulZeroClass.mul_zero
modDivAux_spec
mod_add_div' 📖mathematicalval
mod
div
mul_comm
mod_add_div
mod_le 📖mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
mod
mod_coe
pos
zero_add
lt_irrefl
MulZeroClass.mul_zero
mul_one
le_refl
LT.lt.le
mul_coe 📖mathematicalval
PNat
instMulPNat
mul_div_exact 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
instMulPNat
divExact
eq
mul_coe
div_add_mod
dvd_iff'
natPred_add_one 📖mathematicalnatPred
val
add_comm
one_add_natPred
natPred_inj 📖mathematicalnatPrednatPred_injective
natPred_injective 📖mathematicalPNat
natPred
StrictMono.injective
natPred_strictMono
natPred_le_natPred 📖mathematicalnatPred
PNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
StrictMono.le_iff_le
natPred_strictMono
natPred_lt_natPred 📖mathematicalnatPred
PNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
StrictMono.lt_iff_lt
natPred_strictMono
natPred_monotone 📖mathematicalMonotone
PNat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Nat.instPreorder
natPred
StrictMono.monotone
natPred_strictMono
natPred_strictMono 📖mathematicalStrictMono
PNat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
Nat.instPreorder
natPred
LT.lt.ne'
ofNat_inj 📖
ofNat_le_ofNat 📖mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
ofNat_lt_ofNat 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
one_add_natPred 📖mathematicalnatPred
val
natPred.eq_1
add_tsub_cancel_iff_le
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
one_lt_of_lt 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instOfNatPNatOfNeZeroNatLE.le.trans_lt
bot_le
pos_of_div_pos 📖valpos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
ne_zero
eq_zero_of_zero_dvd
pow_coe 📖mathematicalval
PNat
Monoid.toNatPow
CommMonoid.toMonoid
instCommMonoid
Nat.instMonoid
recOn_one 📖mathematicalPNat
instOfNatPNatOfNeZeroNat
recOn_succ 📖mathematicalPNat
instAddPNat
instOfNatPNatOfNeZeroNat
sub_add_of_lt 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instAddPNat
instSub
add_comm
add_sub_of_lt
sub_coe 📖mathematicalval
PNat
instSub
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
LinearOrder.toDecidableLT
toPNat'_coe
tsub_pos_of_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
tsub_eq_zero_iff_le
le_of_not_gt
sub_le 📖mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instSub
coe_le_coe
sub_coe
val_ofNat 📖mathematicalval

(root)

Definitions

NameCategoryTheorems
instAddCommSemigroupPNat 📖CompOp
instAddLeftCancelSemigroupPNat 📖CompOp
instAddPNat 📖CompOp
20 mathmath: PNat.addLeftMono, PNat.coeAddHom_apply, PNat.lt_add_right, PNat.addLeftReflectLT, PNat.add_sub, Mathlib.Tactic.Ring.instCSLiftValPNatNatHAdd, PNat.add_coe, PNat.add_one_le_iff, PNat.sub_add_of_lt, PNat.recOn_succ, PNat.succ_eq_add_one, PNat.addLeftReflectLE, PNat.lt_add_left, PNat.add_one, PNatPowAssoc.ppow_add, PNat.lt_add_one_iff, PNat.add_sub_of_lt, ppow_add, PNat.addLeftStrictMono, PNat.exists_eq_succ_of_ne_one
instAddRightCancelSemigroupPNat 📖CompOp
instDistribPNat 📖CompOp
instMulPNat 📖CompOp
32 mathmath: PNat.factorMultiset_mul, PNat.gcd_b_eq, PNat.gcd_props, Mathlib.Tactic.Ring.instCSLiftValPNatNatHMul, PNat.Coprime.factor_eq_gcd_right_right, PNat.Coprime.gcd_mul_right_cancel, PNat.gcd_det_eq, PrimeMultiset.prod_add, PNat.Coprime.gcd_mul_right_cancel_right, PNat.Coprime.gcd_mul_left_cancel, PNat.equivNonZeroDivisorsNat_symm_apply_coe, PNat.gcd_rel_left', PNat.Coprime.factor_eq_gcd_right, PNat.gcd_mul_lcm, ppow_mul', PNat.Coprime.gcd_mul, PNat.equivNonZeroDivisorsNat_apply_coe, PNat.Coprime.mul, DivisibleHull.mk_add_mk, DivisibleHull.qsmul_mk, PNat.mul_coe, PNat.Coprime.factor_eq_gcd_left, ppow_mul, PrimeMultiset.prod_ofPNatList, PNat.gcd_rel_right', PNat.Coprime.factor_eq_gcd_left_right, PNat.Coprime.gcd_mul_left_cancel_right, PNat.gcd_a_eq, PNat.Coprime.mul_right, ONote.oadd_mul, DivisibleHull.nnqsmul_mk, PNat.mul_div_exact

---

← Back to Index