Documentation

Mathlib.Data.PNat.Basic

The positive natural numbers #

This file develops the type ℕ+ or PNat, the subtype of natural numbers that are positive. It is defined in Data.PNat.Defs, but most of the development is deferred to here so that Data.PNat.Defs can have very few imports.

@[simp]
theorem PNat.one_add_natPred (n : ℕ+) :
1 + n.natPred = n
@[simp]
theorem PNat.natPred_add_one (n : ℕ+) :
n.natPred + 1 = n
@[simp]
theorem PNat.natPred_inj {m n : ℕ+} :
@[simp]
theorem PNat.mk_ofNat (n : ) (h : 0 < n) :
@[simp]
theorem Nat.succPNat_inj {n m : } :
@[simp]
theorem PNat.coe_inj {m n : ℕ+} :
m = n m = n

We now define a long list of structures on ℕ+ induced by similar structures on . Most of these behave in a completely obvious way, but there are a few things to be said about subtraction, division and powers.

@[simp]
theorem PNat.add_coe (m n : ℕ+) :
↑(m + n) = m + n

coe promoted to an AddHom, that is, a morphism which preserves addition.

Equations
    Instances For
      @[simp]
      theorem PNat.coeAddHom_apply (a✝ : ℕ+) :
      coeAddHom a✝ = a✝

      The order isomorphism between ℕ and ℕ+ given by succ.

      Equations
        Instances For
          theorem PNat.lt_add_one_iff {a b : ℕ+} :
          a < b + 1 a b
          theorem PNat.add_one_le_iff {a b : ℕ+} :
          a + 1 b a < b
          def PNat.caseStrongInductionOn {p : ℕ+Sort u_1} (a : ℕ+) (hz : p 1) (hi : (n : ℕ+) → ((m : ℕ+) → m np m)p (n + 1)) :
          p a

          Strong induction on ℕ+, with n = 1 treated separately.

          Equations
            Instances For
              def PNat.recOn (n : ℕ+) {p : ℕ+Sort u_1} (one : p 1) (succ : (n : ℕ+) → p np (n + 1)) :
              p n

              An induction principle for ℕ+: it takes values in Sort*, so it applies also to Types, not only to Prop.

              Equations
                Instances For
                  @[simp]
                  theorem PNat.recOn_one {p : ℕ+Sort u_1} (one : p 1) (succ : (n : ℕ+) → p np (n + 1)) :
                  recOn 1 one succ = one
                  @[simp]
                  theorem PNat.recOn_succ (n : ℕ+) {p : ℕ+Sort u_1} (one : p 1) (succ : (n : ℕ+) → p np (n + 1)) :
                  (n + 1).recOn one succ = succ n (n.recOn one succ)
                  @[simp]
                  theorem PNat.mul_coe (m n : ℕ+) :
                  ↑(m * n) = m * n

                  PNat.coe promoted to a MonoidHom.

                  Equations
                    Instances For
                      @[simp]
                      theorem PNat.le_one_iff {n : ℕ+} :
                      n 1 n = 1
                      theorem PNat.lt_add_left (n m : ℕ+) :
                      n < m + n
                      theorem PNat.lt_add_right (n m : ℕ+) :
                      n < n + m
                      @[simp]
                      theorem PNat.pow_coe (m : ℕ+) (n : ) :
                      ↑(m ^ n) = m ^ n
                      theorem PNat.one_lt_of_lt {a b : ℕ+} (hab : a < b) :
                      1 < b

                      b is greater one if any a is less than b

                      theorem PNat.add_one (a : ℕ+) :
                      a + 1 = (↑a).succPNat

                      Subtraction a - b is defined in the obvious way when a > b, and by a - b = 1 if a ≤ b.

                      Equations
                        theorem PNat.sub_coe (a b : ℕ+) :
                        ↑(a - b) = if b < a then a - b else 1
                        theorem PNat.sub_le (a b : ℕ+) :
                        a - b a
                        theorem PNat.le_sub_one_of_lt {a b : ℕ+} (hab : a < b) :
                        a b - 1
                        theorem PNat.add_sub_of_lt {a b : ℕ+} :
                        a < ba + (b - a) = b
                        theorem PNat.sub_add_of_lt {a b : ℕ+} (h : b < a) :
                        a - b + b = a
                        @[simp]
                        theorem PNat.add_sub {a b : ℕ+} :
                        a + b - b = a
                        theorem PNat.exists_eq_succ_of_ne_one {n : ℕ+} :
                        n 1∃ (k : ℕ+), n = k + 1

                        If n : ℕ+ is different from 1, then it is the successor of some k : ℕ+.

                        theorem PNat.modDivAux_spec (k : ℕ+) (r q : ) :
                        ¬(r = 0 q = 0) → (k.modDivAux r q).1 + k * (k.modDivAux r q).2 = r + k * q

                        Lemmas with div, dvd and mod operations

                        theorem PNat.mod_add_div (m k : ℕ+) :
                        (m.mod k) + k * m.div k = m
                        theorem PNat.div_add_mod (m k : ℕ+) :
                        k * m.div k + (m.mod k) = m
                        theorem PNat.mod_add_div' (m k : ℕ+) :
                        (m.mod k) + m.div k * k = m
                        theorem PNat.div_add_mod' (m k : ℕ+) :
                        m.div k * k + (m.mod k) = m
                        theorem PNat.mod_le (m k : ℕ+) :
                        m.mod k m m.mod k k
                        theorem PNat.dvd_iff {k m : ℕ+} :
                        k m k m
                        theorem PNat.dvd_iff' {k m : ℕ+} :
                        k m m.mod k = k
                        theorem PNat.le_of_dvd {m n : ℕ+} :
                        m nm n
                        theorem PNat.mul_div_exact {m k : ℕ+} (h : k m) :
                        k * m.divExact k = m
                        theorem PNat.dvd_antisymm {m n : ℕ+} :
                        m nn mm = n
                        theorem PNat.pos_of_div_pos {n : ℕ+} {a : } (h : a n) :
                        0 < a