Documentation Verification Report

Archimedean

πŸ“ Source: Mathlib/Data/Real/Archimedean.lean

Statistics

MetricCount
DefinitionsinstConditionallyCompleteLinearOrder, instFloorRing, instInfSet, instSupSet
4
Theoremsadd_neg_lt_sSup, cauSeq_converges, exists_floor, exists_isGLB, exists_isLUB, exists_natCast_add_one_lt_pow_of_one_lt, exists_nat_pos_inv_lt, iInf_Ioi_eq_iInf_rat_gt, iInf_const_zero, iInf_nonneg, iInf_nonpos, iInf_nonpos', iInf_of_isEmpty, iInf_of_not_bddBelow, iInter_Iic_rat, iSup_const_zero, iSup_le, iSup_nonneg, iSup_nonneg', iSup_nonpos, iSup_of_isEmpty, iSup_of_not_bddAbove, iUnion_Iic_rat, instArchimedean, instIsCompleteAbs, isCauSeq_iff_lift, isGLB_sInf, isLUB_sSup, le_iInf, le_sInf, le_sSup_iff, lt_sInf_add_pos, not_bddAbove_coe, not_bddBelow_coe, of_near, sInf_def, sInf_empty, sInf_le_iff, sInf_le_sSup, sInf_neg, sInf_nonneg, sInf_nonpos, sInf_nonpos', sInf_of_not_bddBelow, sInf_univ, sSup_def, sSup_empty, sSup_le, sSup_neg, sSup_nonneg, sSup_nonneg', sSup_nonpos, sSup_of_not_bddAbove, sSup_univ
54
Total58

Real

Definitions

NameCategoryTheorems
instConditionallyCompleteLinearOrder πŸ“–CompOp
49 mathmath: ProbabilityTheory.cdf_measure_stieltjesFunction, limsup_of_not_isBoundedUnder, volume_val, ENNReal.liminf_toReal_eq, isBigO_norm_Icc_restrict_atTop, liminf_of_not_isBoundedUnder, ProbabilityTheory.IsMeasurableRatCDF.instIsProbabilityMeasure_stieltjesFunction, volume_eq_stieltjes_id, limsSup_of_not_isCobounded, continuousMap_mem_polynomialFunctions_closure, ENNReal.ofReal_limsup, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_univ, Monotone.ae_hasDerivAt, StieltjesFunction.measurable_measure, le_limsup_mul, limsup_of_not_isCoboundedUnder, liminf_of_not_isCoboundedUnder, exists_polynomial_near_continuousMap, MeasureTheory.integral_le_liminf_integral_of_forall_isOpen_measure_le_liminf_measure, ProbabilityTheory.measurable_measure_stieltjesOfMeasurableRat, ENNReal.toReal_limsup, ProbabilityTheory.instIsProbabilityMeasureCondCDF, ProbabilityTheory.measure_cdf, ENNReal.ofReal_essSup, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_Iic, limsInf_of_not_isBounded, ProbabilityTheory.measure_stieltjesOfMeasurableRat_univ, liminf_mul_le, ENNReal.toReal_essSup, ProbabilityTheory.measure_stieltjesOfMeasurableRat_Iic, isBigO_norm_Icc_restrict_atBot, limsInf_of_not_isCobounded, StieltjesFunction.ae_hasDerivAt, ProbabilityTheory.measure_condCDF_Iic, ProbabilityTheory.measurable_measure_condCDF, ProbabilityTheory.instIsProbabilityMeasure_stieltjesOfMeasurableRat, NNReal.toReal_limsup, le_liminf_mul, ProbabilityTheory.IsMeasurableRatCDF.measurable_measure_stieltjesFunction, ProbabilityTheory.measure_condCDF_univ, polynomialFunctions_closure_eq_top', NNReal.toReal_liminf, limsSup_of_not_isBounded, polynomialFunctions_closure_eq_top, ENNReal.limsup_toReal_eq, MeasureTheory.lpNorm_exponent_top_eq_essSup, limsup_mul_le, ProbabilityTheory.IsCondKernelCDF.toKernel_apply, ProbabilityTheory.instIsProbabilityMeasurecdf
instFloorRing πŸ“–CompOp
93 mathmath: Chebyshev.theta_eq_theta_coe_floor, ZLattice.covolume_eq_det_inv, natFloor_logb_natCast, nat_floor_real_sqrt_eq_nat_sqrt, round_exp_one_eq_three, CircleDeg1Lift.map_lt_add_floor_translationNumber_add_one, Chebyshev.psi_eq_psi_coe_floor, GaussianInt.toComplex_div_re, Chebyshev.psi_eq_sum_theta, Chebyshev.psi_sub_theta_eq_sum_not_prime, CircleDeg1Lift.floor_sub_le_translationNumber, Function.Periodic.sInf_add_zsmul_le_integral_of_pos, CircleDeg1Lift.map_le_of_map_zero, CircleDeg1Lift.le_map_of_map_zero, Nat.closedBall_eq_Icc, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, SimpleGraph.triangleRemovalBound_mul_cube_lt, Polynomial.card_eq_of_natDegree_le_of_coeff_le, Complex.arg_cos_add_sin_mul_I_sub, sum_mul_eq_sub_integral_mul', LSeries_eq_mul_integral_of_nonneg, Chebyshev.sum_PrimePow_eq_sum_sum, CircleDeg1Lift.le_floor_map_map_zero, Int.ball_eq_Ioo, Chebyshev.primeCounting_eq_theta_div_log_add_integral, sum_div_nat_floor_pow_sq_le_div_sq, natCeil_logb_natCast, convergent_succ, GaussianInt.toComplex_im_div, exists_nat_abs_mul_sub_round_le, unitInterval.fract_mem, Chebyshev.primeCounting_sub_theta_div_log_isBigO, Behrend.exp_neg_two_mul_le, floor_real_sqrt_eq_nat_sqrt, convergent_zero, sum_mul_eq_sub_integral_mulβ‚€', CircleDeg1Lift.le_map_map_zero, Chebyshev.theta_eq_log_primorial, ProbabilityTheory.strong_law_aux6, CircleDeg1Lift.translationNumber_le_ceil_sub, harmonic_floor_le_one_add_log, Behrend.ceil_lt_mul, GaussianInt.toComplex_re_div, sum_mul_eq_sub_integral_mul₁, Chebyshev.psi_eq_theta_add_sum_theta, ceil_exp_one_eq_three, LSeries_eq_mul_integral, exists_convs_eq_rat, CircleDeg1Lift.le_ceil_map_map_zero, ceil_pi_eq_four, BoxIntegral.unitPartition.index_apply, ZLattice.volume_image_eq_volume_div_covolume, Chebyshev.theta_eq_sum_Icc, log_le_harmonic_floor, UnitAddCircle.norm_eq, convs_eq_convergent, ceil_logb_natCast, locallyIntegrableOn_mul_sum_Icc, ZLattice.volume_image_eq_volume_div_covolume', Int.closedBall_eq_Icc, ProbabilityTheory.strong_law_aux4, SimpleGraph.triangleRemovalBound_le, floor_logb_natCast, floor_pi_eq_three, CircleDeg1Lift.ceil_map_map_zero_le, ZLattice.isAddFundamentalDomain, Chebyshev.psi_eq_sum_Icc, integrableOn_mul_sum_Icc, ProbabilityTheory.strong_law_aux1, ProbabilityTheory.strong_law_aux2, AddCircle.norm_eq, Behrend.div_lt_floor, Function.Periodic.integral_le_sSup_add_zsmul_of_pos, sum_mul_eq_sub_sub_integral_mul', CircleDeg1Lift.map_fract_sub_fract_eq, floor_exp_one_eq_two, sum_mul_eq_sub_integral_mul, CircleDeg1Lift.floor_map_map_zero_le, AddCircle.norm_eq', Complex.Gamma_def, Complex.arg_mul_cos_add_sin_mul_I_sub, sum_mul_eq_sub_integral_mulβ‚€, CircleDeg1Lift.map_map_zero_le, CircleDeg1Lift.mul_floor_map_zero_le_floor_iterate_zero, NumberField.Units.basisOfIsMaxRank_fundSystem, sum_mul_eq_sub_sub_integral_mul, Chebyshev.eventually_primeCounting_le, round_pi_eq_three, LSeries_eq_mul_integral', mul_pow_le_nat_floor_pow, ofDigits_digits_sum_eq, GaussianInt.toComplex_div_im, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne
instInfSet πŸ“–CompOp
84 mathmath: iInf_Ioi_eq_iInf_rat_gt, iInf_nonpos', iInf_of_isEmpty, sSup_smul_of_nonpos, gauge_def', ProbabilityTheory.IsMeasurableRatCDF.iInf_rat_gt_eq, norm_eq_iInf_iff_real_inner_le_zero, iInf_nonneg, iInf_of_not_bddBelow, ediam_eq, ENNReal.ofReal_iInf, iInf_mul_of_nonneg, ContinuousAlternatingMap.norm_def, sInf_of_not_bddBelow, sInf_le_sSup, sInf_smul_of_nonneg, PiTensorProduct.projectiveSeminorm_apply, Function.Periodic.sInf_add_zsmul_le_integral_of_pos, ContinuousLinearMap.iInf_rayleigh_eq_iInf_rayleigh_sphere, Submodule.norm_eq_iInf_iff_inner_eq_zero, BoundedContinuousFunction.dist_eq, StieltjesFunction.iInf_rat_gt_eq, Set.Nontrivial.infsep_eq_iInf, iSup_mul_of_nonpos, iInf_const_zero, ArchimedeanClass.stdPart_eq_sInf, BoundedContinuousFunction.norm_eq, Set.infsep_eq_iInf, Submodule.norm_eq_iInf_iff_real_inner_eq_zero, GroupSeminorm.inf_apply, le_sInf, mul_iInf_of_nonneg, sInf_neg, smul_iInf_of_nonpos, ContinuousLinearMap.norm_def, iInf_mul_of_nonpos, ContinuousOn.isBigOWith_rev_principal, diam_eq, gauge_def, sInf_nonpos, sInf_nonneg, quotient_norm_mk_eq, Seminorm.inf_apply, sInf_empty, sInf_univ, NormedAddGroupHom.IsQuotient.norm, LinearMap.IsSymmetric.hasEigenvalue_iInf_of_finiteDimensional, ConvexOn.hasDerivWithinAt_sInf_slope_of_mem_interior, ProbabilityTheory.IsRatCondKernelCDFAux.integrable_iInf_rat_gt, ENNReal.toReal_iInf, IsSelfAdjoint.hasEigenvector_of_isMinOn, NNReal.coe_iInf, sInf_le_iff, sInf_smul_of_nonpos, BoundedContinuousFunction.norm_eq_of_nonempty, ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral_iInf_rat_gt, exists_norm_eq_iInf_of_complete_convex, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunctionAux_def, StieltjesFunction.iInf_Ioi_eq, sInf_nonpos', Submodule.starProjection_minimal, SchwartzMap.seminorm_apply, le_iInf, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunctionAux_def', smul_iSup_of_nonpos, ProbabilityTheory.iInf_rat_gt_defaultRatCDF, mul_iSup_of_nonpos, Metric.infDist_eq_iInf, ContinuousMultilinearMap.norm_def, NormedAddGroupHom.norm_def, isGLB_sInf, mul_iInf_of_nonpos, sSup_neg, Submodule.exists_norm_eq_iInf_of_complete_subspace, sInf_def, AddGroupSeminorm.inf_apply, iInf_nonpos, ConvexOn.rightDeriv_eq_sInf_slope_of_mem_interior, tendsto_atTop_csInf_of_antitoneOn_bddBelow_nat_Ici, lt_sInf_add_pos, smul_iInf_of_nonneg, ProbabilityTheory.IsRatStieltjesPoint.iInf_rat_gt_eq, NNReal.coe_sInf, ENNReal.toReal_sInf
instSupSet πŸ“–CompOp
106 mathmath: HasCompactSupport.convolution_integrand_bound_left, sSup_smul_of_nonpos, BoundedContinuousFunction.dist_eq_iSup, ContinuousLinearMap.sSup_unit_ball_eq_norm, NonarchAddGroupSeminorm.coe_iSup_apply, sSup_empty, GroupSeminorm.coe_iSup_apply, ContinuousLinearMap.iSup_rayleigh_eq_iSup_rayleigh_sphere, iSup_nonneg', NNReal.coe_sSup, ediam_eq, add_neg_lt_sSup, ConvexOn.univ_sSup_of_countable_affine_eq, NNReal.coe_iSup, iSup_nonpos, IsUltrametricDist.invariantExtension_apply, sInf_le_sSup, tendsto_atTop_csSup_of_monotoneOn_bddAbove_nat_Ici, IsUltrametricDist.norm_tsum_le, sSup_smul_of_nonneg, IsUltrametricDist.norm_tprod_le, sSup_nonpos, ContinuousMap.norm_eq_iSup_norm, NumberField.mulHeight_eq, spectralNorm_eq_iSup_of_finiteDimensional_normal, LinearMap.IsSymmetric.hasEigenvalue_iSup_of_finiteDimensional, Hyperreal.isSt_sSup, iSup_mul_of_nonpos, sSup_nonneg, IsSelfAdjoint.hasEigenvector_of_isMaxOn, ConvexOn.sSup_of_countable_affine_eq, iSup_pow, PiLp.dist_eq_iSup, ConvexOn.real_univ_sSup_of_countable_affine_eq, WithSeminorms.uniformEquicontinuous_iff_bddAbove_and_continuous_iSup, ConvexOn.sSup_of_nat_affine_eq, Seminorm.iSup_apply, sInf_neg, AddGroupSeminorm.coe_iSup_apply, smul_iInf_of_nonpos, iSup_const_zero, ContinuousLinearMap.sSup_sphere_eq_norm, iInf_mul_of_nonpos, diam_eq, Height.mulHeight_eq, PiTensorProduct.injectiveSeminorm_apply, iSup_of_isEmpty, PiLp.norm_eq_ciSup, Seminorm.coe_sSup_eq', ContinuousOn.isBigOWith_principal, iSup_pow_of_ne_zero, AddGroupSeminorm.coe_sSup_apply, sSup_le, ConvexOn.real_univ_sSup_affine_eq, AddGroupSeminorm.coe_sSup_apply', sSup_univ, ConvexOn.hasDerivWithinAt_sSup_slope_of_mem_interior, CStarModule.norm_eq_csSup, Seminorm.continuous_iSup, Seminorm.coe_sSup_eq, iSup_mul_of_nonneg, GroupSeminorm.coe_sSup_apply', iSup_of_not_bddAbove, ConvexOn.univ_sSup_affine_eq, ConvexOn.real_univ_sSup_of_nat_affine_eq, ConvexOn.leftDeriv_eq_sSup_slope_of_mem_interior, ConvexOn.real_sSup_of_countable_affine_eq, ENNReal.toReal_sSup, iSup_le, OrthonormalBasis.norm_le_card_mul_iSup_norm_inner, sInf_smul_of_nonpos, max_norm_root_eq_spectralValue, sSup_def, smul_iSup_of_nonneg, smul_iSup_of_nonpos, Function.Periodic.integral_le_sSup_add_zsmul_of_pos, le_sSup_iff, lp.norm_eq_ciSup, Polynomial.supNorm_eq_iSup, ContinuousLinearMap.sSup_unitClosedBall_eq_norm, Seminorm.coe_iSup_eq, mul_iSup_of_nonpos, sSup_of_not_bddAbove, GroupSeminorm.coe_sSup_apply, isLUB_sSup, NonarchAddGroupSeminorm.coe_sSup_apply', ConvexOn.real_sSup_of_nat_affine_eq, BoundedContinuousFunction.norm_eq_iSup_norm, Hyperreal.st_eq_sSup, UniformFun.dist_def, mul_iInf_of_nonpos, sSup_neg, ConvexOn.sSup_affine_eq, sInf_def, NonarchAddGroupSeminorm.coe_sSup_apply, HasCompactSupport.convolution_integrand_bound_right, ConvexOn.real_sSup_affine_eq, iSup_nonneg, HasCompactSupport.convolution_integrand_bound_right_of_subset, ConvexOn.univ_sSup_of_nat_affine_eq, Seminorm.sSup_apply, ENNReal.toReal_iSup, ContinuousMap.dist_eq_iSup, ArchimedeanClass.stdPart_eq_sSup, mul_iSup_of_nonneg, sSup_nonneg'

Theorems

NameKindAssumesProvesValidatesDepends On
add_neg_lt_sSup πŸ“–mathematicalSet.Nonempty
Real
instLT
instZero
Set
Set.instMembership
instAdd
SupSet.sSup
instSupSet
β€”exists_lt_of_lt_csSup
add_lt_iff_neg_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
cauSeq_converges πŸ“–mathematicalβ€”CauSeq
Real
instField
linearOrder
instIsStrictOrderedRing
instRing
abs
lattice
instAddGroup
CauSeq.equiv
IsAbsoluteValue.abs_isAbsoluteValue
CauSeq.const
β€”instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
CauSeq.exists_lt
le_of_lt
CauSeq.const_lt
CauSeq.lt_trans
CauSeq.exists_gt
CauSeq.lt_total
LE.le.not_gt
Nat.instAtLeastTwoHAddOfNat
csSup_le
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
CauSeq.sub_apply
CauSeq.const_apply
sub_right_comm
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
add_halves
ZeroLEOneClass.neZero.two
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
sub_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
le_csSup
add_comm
sub_sub
lt_add_iff_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
exists_floor πŸ“–mathematicalβ€”Real
instLE
instIntCast
β€”Int.floor_le
Int.le_floor
exists_isGLB πŸ“–mathematicalSet.Nonempty
Real
BddBelow
instLE
IsGLBβ€”Set.nonempty_neg
bddAbove_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
exists_isLUB
isLUB_neg
exists_isLUB πŸ“–mathematicalSet.Nonempty
Real
BddAbove
instLE
IsLUBβ€”exists_int_gt
instIsStrictOrderedRing
instArchimedean
Int.cast_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
LE.le.trans
Int.cast_mul
Int.cast_natCast
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
instIsOrderedRing
LT.lt.le
Nat.cast_nonneg
Rat.cast_div
Rat.cast_intCast
Rat.cast_natCast
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_pos
instNontrivial
LT.lt.trans_le
Int.sub_one_lt_floor
Int.floor_le
lt_div_iffβ‚€
sub_mul
inv_mul_cancelβ‚€
ne_of_gt
Rat.instIsStrictOrderedRing
le_trans
Nat.le_ceil
Nat.cast_le
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_of_lt_of_le
Rat.cast_lt
Rat.cast_sub
Rat.cast_inv
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
lt_of_le_of_lt
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
inv_le_commβ‚€
abs_lt
neg_lt
neg_sub
le_rfl
le_of_forall_lt_imp_le_of_dense
LinearOrderedSemiField.toDenselyOrdered
exists_nat_gt
le_mk_of_forall_le
sub_pos
le_sub_comm
mk_le_of_forall_le
Int.exists_greatest_of_bdd
exists_natCast_add_one_lt_pow_of_one_lt πŸ“–mathematicalReal
instLT
instOne
instAdd
instNatCast
Monoid.toNatPow
instMonoid
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
le_of_forall_lt_rat_imp_le
instIsStrictOrderedRing
instArchimedean
LE.le.trans
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_pos'
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
sub_mul
one_mul
Nat.cast_one
Rat.cast_natCast
Rat.mul_den_eq_num
Int.cast_natCast
Int.cast_one
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
one_lt_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Rat.num_div_den
Nat.instAtLeastTwoHAddOfNat
Nat.two_mul_sq_add_one_le_two_pow_two_mul
one_div
inv_mul_cancelβ‚€
LT.lt.ne'
IsOrderedRing.toMulPosMono
instIsOrderedRing
IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_add
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
le_of_lt
add_pos'
mul_pos
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
mul_add_one_le_add_one_pow
pow_mul
mul_left_comm
sq
pow_lt_pow_leftβ‚€
ne_of_gt
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
exists_nat_pos_inv_lt πŸ“–mathematicalReal
instLT
instZero
instInv
instNatCast
β€”LT.lt.trans
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Nat.cast_pos
instIsOrderedRing
instNontrivial
inv_lt_commβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
exists_nat_gt
instArchimedean
iInf_Ioi_eq_iInf_rat_gt πŸ“–mathematicalBddBelow
Real
instLE
Set.image
Set.Ioi
instPreorder
Monotone
iInf
Set.Elem
instInfSet
Set
Set.instMembership
instLT
instRatCast
β€”le_antisymm
exists_rat_gt
instIsStrictOrderedRing
instArchimedean
le_ciInf
exists_rat_btwn
Subtype.prop
ciInf_set_le
LT.lt.trans
Set.nonempty_Ioi_subtype
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
Set.mem_Ioi
LE.le.trans
ciInf_le
le_trans
le_refl
LT.lt.le
iInf_const_zero πŸ“–mathematicalβ€”iInf
Real
instInfSet
instZero
β€”isEmpty_or_nonempty
iInf_of_isEmpty
ciInf_const
iInf_nonneg πŸ“–mathematicalReal
instLE
instZero
iInf
instInfSet
β€”le_iInf
le_rfl
iInf_nonpos πŸ“–mathematicalReal
instLE
instZero
iInf
instInfSet
β€”sInf_nonpos
Set.forall_mem_range
iInf_nonpos' πŸ“–mathematicalReal
instLE
instZero
iInf
instInfSet
β€”sInf_nonpos'
Set.exists_range_iff
iInf_of_isEmpty πŸ“–mathematicalβ€”iInf
Real
instInfSet
instZero
β€”iInf_of_isEmpty
sInf_empty
iInf_of_not_bddBelow πŸ“–mathematicalBddBelow
Real
instLE
Set.range
iInf
instInfSet
instZero
β€”sInf_of_not_bddBelow
iInter_Iic_rat πŸ“–mathematicalβ€”Set.iInter
Real
Set.Iic
instPreorder
instRatCast
Set
Set.instEmptyCollection
β€”iInter_Iic_eq_empty_iff
not_bddBelow_coe
iSup_const_zero πŸ“–mathematicalβ€”iSup
Real
instSupSet
instZero
β€”isEmpty_or_nonempty
iSup_of_isEmpty
ciSup_const
iSup_le πŸ“–mathematicalReal
instLE
instZero
iSup
instSupSet
β€”sSup_le
Set.forall_mem_range
iSup_nonneg πŸ“–mathematicalReal
instLE
instZero
iSup
instSupSet
β€”sSup_nonneg
Set.forall_mem_range
iSup_nonneg' πŸ“–mathematicalReal
instLE
instZero
iSup
instSupSet
β€”sSup_nonneg'
Set.exists_range_iff
iSup_nonpos πŸ“–mathematicalReal
instLE
instZero
iSup
instSupSet
β€”iSup_le
le_rfl
iSup_of_isEmpty πŸ“–mathematicalβ€”iSup
Real
instSupSet
instZero
β€”Set.range_eq_empty_iff
sSup_empty
iSup_of_not_bddAbove πŸ“–mathematicalBddAbove
Real
instLE
Set.range
iSup
instSupSet
instZero
β€”sSup_of_not_bddAbove
iUnion_Iic_rat πŸ“–mathematicalβ€”Set.iUnion
Real
Set.Iic
instPreorder
instRatCast
Set.univ
β€”iUnion_Iic_of_not_bddAbove_range
not_bddAbove_coe
instArchimedean πŸ“–mathematicalβ€”Archimedean
Real
instAddCommMonoid
partialOrder
β€”archimedean_iff_rat_le
instIsStrictOrderedRing
Rat.instIsStrictOrderedRing
CauSeq.bounded'
IsAbsoluteValue.abs_isAbsoluteValue
mk_le_of_forall_le
Rat.cast_le
le_of_lt
abs_lt
Rat.instAddLeftMono
covariant_swap_add_of_covariant_add
instIsCompleteAbs πŸ“–mathematicalβ€”CauSeq.IsComplete
Real
instField
linearOrder
instIsStrictOrderedRing
instRing
abs
lattice
instAddGroup
IsAbsoluteValue.abs_isAbsoluteValue
β€”instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
cauSeq_converges
isCauSeq_iff_lift πŸ“–mathematicalβ€”IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
DivisionRing.toRing
Rat.instDivisionRing
abs
Rat.instLattice
Rat.addGroup
Real
instField
linearOrder
instIsStrictOrderedRing
instRing
lattice
instAddGroup
instRatCast
β€”Rat.instIsStrictOrderedRing
instIsStrictOrderedRing
exists_pos_rat_lt
instArchimedean
lt_trans
IsStrictOrderedRing.toCharZero
Rat.cast_pos
isGLB_sInf πŸ“–mathematicalSet.Nonempty
Real
BddBelow
instLE
IsGLB
InfSet.sInf
instInfSet
β€”sInf_def
isLUB_neg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
neg_neg
isLUB_sSup
Set.Nonempty.neg
BddBelow.neg
isLUB_sSup πŸ“–mathematicalSet.Nonempty
Real
BddAbove
instLE
IsLUB
SupSet.sSup
instSupSet
β€”exists_isLUB
le_iInf πŸ“–mathematicalReal
instLE
instZero
iInf
instInfSet
β€”le_sInf
Set.forall_mem_range
le_sInf πŸ“–mathematicalReal
instLE
instZero
InfSet.sInf
instInfSet
β€”Set.eq_empty_or_nonempty
LE.le.trans_eq
sInf_empty
le_csInf
le_sSup_iff πŸ“–mathematicalBddAbove
Real
instLE
Set.Nonempty
SupSet.sSup
instSupSet
Set
Set.instMembership
instLT
instAdd
β€”le_iff_forall_pos_lt_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
exists_lt_of_lt_csSup
lt_sub_iff_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
neg_lt_zero
sub_lt_iff_lt_add
lt_csSup_of_lt
lt_sInf_add_pos πŸ“–mathematicalSet.Nonempty
Real
instLT
instZero
Set
Set.instMembership
instAdd
InfSet.sInf
instInfSet
β€”exists_lt_of_csInf_lt
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
not_bddAbove_coe πŸ“–mathematicalβ€”BddAbove
Real
instLE
Set.range
instRatCast
β€”Set.not_nonempty_iff_eq_empty
Set.ext
exists_rat_gt
instIsStrictOrderedRing
instArchimedean
not_bddBelow_coe πŸ“–mathematicalβ€”BddBelow
Real
instLE
Set.range
instRatCast
β€”Set.not_nonempty_iff_eq_empty
Set.ext
exists_rat_lt
instIsStrictOrderedRing
instArchimedean
of_near πŸ“–mathematicalReal
instLT
abs
lattice
instAddGroup
instSub
instRatCast
IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
DivisionRing.toRing
Rat.instDivisionRing
Rat.instLattice
Rat.addGroup
β€”Rat.instIsStrictOrderedRing
instIsStrictOrderedRing
isCauSeq_iff_lift
CauSeq.of_near
IsAbsoluteValue.abs_isAbsoluteValue
sub_eq_zero
abs_eq_zero
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
eq_of_le_of_forall_lt_imp_le_of_dense
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
abs_nonneg
mk_near_of_forall_near
le_of_lt
sInf_def πŸ“–mathematicalβ€”InfSet.sInf
Real
instInfSet
instNeg
SupSet.sSup
instSupSet
Set
Set.neg
β€”β€”
sInf_empty πŸ“–mathematicalβ€”InfSet.sInf
Real
instInfSet
Set
Set.instEmptyCollection
instZero
β€”sSup_empty
neg_zero
sInf_le_iff πŸ“–mathematicalBddBelow
Real
instLE
Set.Nonempty
InfSet.sInf
instInfSet
Set
Set.instMembership
instLT
instAdd
β€”le_iff_forall_pos_lt_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
exists_lt_of_csInf_lt
csInf_lt_of_lt
sInf_le_sSup πŸ“–mathematicalBddBelow
Real
instLE
BddAbove
InfSet.sInf
instInfSet
SupSet.sSup
instSupSet
β€”Set.eq_empty_or_nonempty
sInf_empty
sSup_empty
le_refl
csInf_le_csSup
sInf_neg πŸ“–mathematicalβ€”InfSet.sInf
Real
instInfSet
Set
Set.neg
instNeg
SupSet.sSup
instSupSet
β€”neg_eq_iff_eq_neg
sSup_neg
neg_neg
sInf_nonneg πŸ“–mathematicalReal
instLE
instZero
InfSet.sInf
instInfSet
β€”le_sInf
le_rfl
sInf_nonpos πŸ“–mathematicalReal
instLE
instZero
InfSet.sInf
instInfSet
β€”Set.eq_empty_or_nonempty
Eq.le
sInf_empty
sInf_nonpos'
sInf_nonpos' πŸ“–mathematicalReal
Set
Set.instMembership
instLE
instZero
InfSet.sInf
instInfSet
β€”csInf_le_of_le
Eq.le
sInf_of_not_bddBelow
sInf_of_not_bddBelow πŸ“–mathematicalBddBelow
Real
instLE
InfSet.sInf
instInfSet
instZero
β€”neg_eq_zero
sSup_of_not_bddAbove
bddAbove_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
sInf_univ πŸ“–mathematicalβ€”InfSet.sInf
Real
instInfSet
Set.univ
instZero
β€”csInf_of_not_bddBelow
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
instIsOrderedRing
instNontrivial
sSup_empty
neg_zero
sSup_def πŸ“–mathematicalβ€”SupSet.sSup
Real
instSupSet
Set.Nonempty
BddAbove
instLE
IsLUB
exists_isLUB
instZero
β€”β€”
sSup_empty πŸ“–mathematicalβ€”SupSet.sSup
Real
instSupSet
Set
Set.instEmptyCollection
instZero
β€”β€”
sSup_le πŸ“–mathematicalReal
instLE
instZero
SupSet.sSup
instSupSet
β€”Set.eq_empty_or_nonempty
Eq.trans_le
sSup_empty
csSup_le
sSup_neg πŸ“–mathematicalβ€”SupSet.sSup
Real
instSupSet
Set
Set.neg
instNeg
InfSet.sInf
instInfSet
β€”Set.eq_empty_or_nonempty
sSup_empty
sInf_empty
neg_zero
csSup_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
csInf_of_not_bddBelow
csSup_of_not_bddAbove
Iff.not
bddAbove_neg
sSup_nonneg πŸ“–mathematicalReal
instLE
instZero
SupSet.sSup
instSupSet
β€”Set.eq_empty_or_nonempty
Eq.ge
sSup_empty
sSup_nonneg'
sSup_nonneg' πŸ“–mathematicalReal
Set
Set.instMembership
instLE
instZero
SupSet.sSup
instSupSet
β€”le_csSup_of_le
Eq.ge
sSup_of_not_bddAbove
sSup_nonpos πŸ“–mathematicalReal
instLE
instZero
SupSet.sSup
instSupSet
β€”sSup_le
le_rfl
sSup_of_not_bddAbove πŸ“–mathematicalBddAbove
Real
instLE
SupSet.sSup
instSupSet
instZero
β€”β€”
sSup_univ πŸ“–mathematicalβ€”SupSet.sSup
Real
instSupSet
Set.univ
instZero
β€”sSup_of_not_bddAbove
not_bddAbove_univ
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial

---

← Back to Index