Documentation Verification Report

ConjExponents

πŸ“ Source: Mathlib/Data/Real/ConjExponents.lean

Statistics

MetricCount
DefinitionsconjExponent, HolderConjugate, HolderTriple, conjExponent, HolderConjugate, HolderTriple, conjExponent
7
TheoremsconjExponent, conjExponent_eq, conj_eq, div_conj_eq_sub_one, instConjExponentOfFactLeOfNat, inv_inv, inv_one_sub_inv, inv_one_sub_inv', mul_eq_add, of_toNNReal, of_toReal, one_sub_inv_inv, one_top, toNNReal, toNNReal_iff, toReal, toReal_iff, top_one, of_toNNReal, of_toReal, toNNReal, toNNReal_iff, toReal, toReal_iff, coe_conjExponent, holderConjugate_coe_iff, holderTriple_coe_iff, isConjExponent_comm, isConjExponent_iff_eq_conjExponent, coe_ennreal, conjExponent, conjExponent_eq, conjugate_eq, div_conj_eq_sub_one, inv_add_inv_ennreal, inv_add_inv_eq_one, inv_inv, inv_one_sub_inv, mul_eq_add, one_sub_inv, one_sub_inv_inv, sub_one_mul_conj, sub_one_ne_zero, sub_one_pos, two_two, coe_ennreal, holderConjugate_div_div, inv_add_inv_eq_inv, inv_eq, inv_inv_add_inv, inv_lt_inv, inv_ne_zero, inv_ne_zero', inv_nonneg, inv_nonneg', inv_pos, inv_pos', inv_sub_inv_eq_inv, left_pos, lt, ne_zero, ne_zero', nonneg, nonneg', of_pos, one_div_add_one_div, one_div_eq, one_div_ne_zero, one_div_ne_zero', one_div_nonneg, one_div_nonneg', one_div_pos, one_div_pos', pos, pos', right_pos, holderConjugate_coe_iff, holderConjugate_comm, holderConjugate_iff, holderConjugate_iff_eq_conjExponent, holderConjugate_one_div, holderTriple_coe_iff, holderTriple_iff, conjExponent, conjExponent_eq, conjugate_eq, div_conj_eq_sub_one, ennrealOfReal, inv_add_inv_ennreal, inv_add_inv_eq_one, inv_inv, inv_one_sub_inv, inv_sub_one, mul_eq_add, one_sub_inv, one_sub_inv_inv, sub_one_mul_conj, sub_one_ne_zero, sub_one_pos, toNNReal, two_two, ennrealOfReal, holderConjugate_div_div, inv_add_inv_eq_inv, inv_eq, inv_inv_add_inv, inv_lt_inv, inv_ne_zero, inv_ne_zero', inv_nonneg, inv_nonneg', inv_pos, inv_pos', inv_sub_inv_eq_inv, left_pos, lt, ne_zero, ne_zero', nonneg, nonneg', of_pos, one_div_add_one_div, one_div_eq, one_div_ne_zero, one_div_ne_zero', one_div_nonneg, one_div_nonneg', one_div_pos, one_div_pos', pos, pos', right_pos, toNNReal, holderConjugate_comm, holderConjugate_iff, holderConjugate_iff_eq_conjExponent, holderConjugate_one_div, holderTriple_iff
138
Total145

ENNReal

Definitions

NameCategoryTheorems
conjExponent πŸ“–CompOp
4 mathmath: HolderConjugate.instConjExponentOfFactLeOfNat, HolderConjugate.conjExponent, coe_conjExponent, HolderConjugate.conjExponent_eq

Theorems

NameKindAssumesProvesValidatesDepends On
coe_conjExponent πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
ofNNReal
NNReal.conjExponent
conjExponent
β€”NNReal.conjExponent.eq_1
conjExponent.eq_1
Nat.cast_one
coe_inv
LT.lt.ne'
tsub_pos_of_lt
NNReal.instCanonicallyOrderedAdd
NNReal.instOrderedSub
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
NNReal.addLeftMono
LT.lt.le
holderConjugate_coe_iff πŸ“–mathematicalβ€”HolderConjugate
ofNNReal
NNReal.HolderConjugate
β€”holderTriple_coe_iff
one_ne_zero
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
holderTriple_coe_iff πŸ“–mathematicalβ€”HolderTriple
ofNNReal
NNReal.HolderTriple
β€”NNReal.holderTriple_iff
Nat.cast_zero
HolderTriple.unique
coe_zero
HolderTriple.symm
HolderTriple.instZero
HolderTriple.inv_add_inv_eq_inv
Ne.bot_lt
holderTriple_iff
NNReal.HolderTriple.ne_zero
NNReal.HolderTriple.symm
NNReal.HolderTriple.inv_add_inv_eq_inv
isConjExponent_comm πŸ“–mathematicalβ€”HolderConjugateβ€”HolderConjugate.symm
isConjExponent_iff_eq_conjExponent πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
HolderConjugate
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instInv
instSub
β€”HolderConjugate.conj_eq
HolderConjugate.conjExponent

ENNReal.HolderConjugate

Theorems

NameKindAssumesProvesValidatesDepends On
conjExponent πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENNReal.HolderConjugate
ENNReal.conjExponent
β€”LT.lt.ne'
LT.lt.trans_le
zero_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
ENNReal.instCharZero
eq_1
ENNReal.holderTriple_iff
ENNReal.conjExponent.eq_1
add_comm
AddLECancellable.eq_tsub_iff_add_eq_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
ENNReal.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
ENNReal.instOrderedSub
inv_one
inv_eq_iff_eq_inv
LE.le.eq_or_lt
tsub_self
ENNReal.inv_zero
add_top
eq_or_ne
ENNReal.top_sub
ENNReal.inv_top
add_zero
tsub_zero
ENNReal.add_div
ENNReal.div_self
tsub_pos_of_lt
ENNReal.sub_ne_top
one_div
tsub_add_cancel_of_le
div_eq_mul_inv
ENNReal.mul_inv
inv_inv
ENNReal.mul_sub
ENNReal.inv_mul_cancel
mul_one
conjExponent_eq πŸ“–mathematicalβ€”ENNReal.conjExponentβ€”one_le
unique
instConjExponentOfFactLeOfNat
conj_eq πŸ“–mathematicalβ€”ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENNReal.instInv
ENNReal.instSub
β€”conjExponent_eq
div_conj_eq_sub_one πŸ“–mathematicalβ€”ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
ENNReal.instSub
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”eq_or_ne
one_div
ENNReal.inv_top
tsub_self
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
unique
symm
instOneInfty
ENNReal.eq_sub_of_add_eq
ENNReal.one_ne_top
ENNReal.div_self
ne_zero
ENNReal.add_div
mul_eq_add
mul_div_assoc
mul_one
instConjExponentOfFactLeOfNat πŸ“–mathematicalβ€”ENNReal.HolderConjugate
ENNReal.conjExponent
β€”conjExponent
Fact.out
inv_inv πŸ“–mathematicalENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENNReal.HolderConjugate
ENNReal.instInv
β€”inv_inv
inv_one
inv_one_sub_inv πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENNReal.HolderConjugate
ENNReal.instInv
ENNReal.instSub
β€”inv_inv
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
ENNReal.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
ENNReal.instOrderedSub
inv_one_sub_inv' πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENNReal.HolderConjugate
ENNReal.instInv
ENNReal.instSub
β€”inv_inv
inv_one_sub_inv
ENNReal.inv_le_one
mul_eq_add πŸ“–mathematicalβ€”ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Distrib.toAdd
β€”eq_or_ne
ENNReal.top_mul
ne_zero
symm
top_add
ENNReal.mul_top
add_top
add_comm
mul_one
mul_add
Distrib.leftDistribClass
ENNReal.mul_inv_cancel
add_mul
Distrib.rightDistribClass
one_mul
ENNReal.inv_mul_cancel_right
inv_add_inv_eq_one
of_toNNReal πŸ“–mathematicalNNReal.HolderConjugate
ENNReal.toNNReal
ENNReal.HolderConjugateβ€”of_toReal
NNReal.HolderConjugate.coe
of_toReal πŸ“–mathematicalReal.HolderConjugate
ENNReal.toReal
ENNReal.HolderConjugateβ€”ENNReal.HolderTriple.of_toReal
Real.HolderConjugate.eq_1
ENNReal.toReal_one
one_sub_inv_inv πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENNReal.HolderConjugate
ENNReal.instInv
ENNReal.instSub
β€”symm
inv_one_sub_inv
one_top πŸ“–mathematicalβ€”ENNReal.HolderConjugate
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Top.top
instTopENNReal
β€”inv_one
ENNReal.inv_top
add_zero
toNNReal πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
ENNReal.toNNReal
NNReal.HolderConjugateβ€”toNNReal_iff
toNNReal_iff πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
ENNReal.toNNReal
NNReal.HolderConjugate
ENNReal.HolderConjugate
β€”toReal_iff
toReal πŸ“–mathematicalReal
Real.instLT
Real.instOne
ENNReal.toReal
Real.HolderConjugateβ€”toReal_iff
toReal_iff πŸ“–mathematicalReal
Real.instLT
Real.instOne
ENNReal.toReal
Real.HolderConjugate
ENNReal.HolderConjugate
β€”of_toReal
ENNReal.toReal_pos_iff
pos
symm
lt_top_iff_one_lt
Mathlib.Tactic.Contrapose.contrapose₁
ENNReal.toReal_mono
ENNReal.one_ne_top
ENNReal.HolderTriple.toReal
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
top_one πŸ“–mathematicalβ€”ENNReal.HolderConjugate
Top.top
ENNReal
instTopENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”ENNReal.inv_top
inv_one
zero_add

ENNReal.HolderTriple

Theorems

NameKindAssumesProvesValidatesDepends On
of_toNNReal πŸ“–mathematicalNNReal.HolderTriple
ENNReal.toNNReal
ENNReal.HolderTripleβ€”of_toReal
NNReal.HolderTriple.coe
of_toReal πŸ“–mathematicalReal.HolderTriple
ENNReal.toReal
ENNReal.HolderTripleβ€”Real.HolderTriple.pos
Real.HolderTriple.symm
Real.HolderTriple.pos'
ENNReal.ofReal_toReal
LT.lt.ne
ENNReal.toReal_pos_iff
Real.HolderTriple.ennrealOfReal
toNNReal πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal.toNNReal
NNReal.HolderTripleβ€”toNNReal_iff
toNNReal_iff πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal.toNNReal
NNReal.HolderTriple
ENNReal.HolderTriple
β€”toReal_iff
toReal πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal.toReal
Real.HolderTripleβ€”toReal_iff
toReal_iff πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal.toReal
Real.HolderTriple
ENNReal.HolderTriple
β€”of_toReal
ENNReal.toReal_add
LT.lt.ne'
ENNReal.toReal_pos_iff
ENNReal.toReal_inv
inv_add_inv_eq_inv

NNReal

Definitions

NameCategoryTheorems
HolderConjugate πŸ“–MathDef
15 mathmath: Real.HolderConjugate.toNNReal, holderConjugate_comm, ENNReal.holderConjugate_coe_iff, HolderConjugate.conjExponent, holderConjugate_one_div, HolderConjugate.two_two, HolderConjugate.one_sub_inv_inv, HolderTriple.holderConjugate_div_div, holderConjugate_iff_eq_conjExponent, ENNReal.HolderConjugate.toNNReal_iff, HolderConjugate.inv_inv, holderConjugate_coe_iff, HolderConjugate.inv_one_sub_inv, holderConjugate_iff, ENNReal.HolderConjugate.toNNReal
HolderTriple πŸ“–CompData
7 mathmath: ENNReal.holderTriple_coe_iff, ENNReal.HolderTriple.toNNReal_iff, ENNReal.HolderTriple.toNNReal, HolderTriple.of_pos, Real.HolderTriple.toNNReal, holderTriple_coe_iff, holderTriple_iff
conjExponent πŸ“–CompOp
3 mathmath: HolderConjugate.conjExponent, HolderConjugate.conjExponent_eq, ENNReal.coe_conjExponent

Theorems

NameKindAssumesProvesValidatesDepends On
holderConjugate_coe_iff πŸ“–mathematicalβ€”Real.HolderConjugate
toReal
HolderConjugate
β€”holderTriple_coe_iff
holderConjugate_comm πŸ“–mathematicalβ€”HolderConjugateβ€”HolderConjugate.symm
holderConjugate_iff πŸ“–mathematicalβ€”HolderConjugate
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instInv
β€”holderConjugate_coe_iff
Real.holderConjugate_iff
coe_one
Nat.cast_one
holderConjugate_iff_eq_conjExponent πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
HolderConjugate
instDiv
instSub
β€”holderConjugate_coe_iff
Real.holderConjugate_iff_eq_conjExponent
Nat.cast_one
coe_one
coe_sub
LT.lt.le
holderConjugate_one_div πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
HolderConjugate
instDiv
β€”one_div
HolderConjugate.inv_inv
holderTriple_coe_iff πŸ“–mathematicalβ€”Real.HolderTriple
toReal
HolderTriple
β€”Real.holderTriple_iff
Nat.cast_zero
holderTriple_iff
holderTriple_iff πŸ“–mathematicalβ€”HolderTriple
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instInv
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”β€”

NNReal.HolderConjugate

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ennreal πŸ“–mathematicalNNReal.HolderConjugateENNReal.HolderConjugate
ENNReal.ofNNReal
β€”ENNReal.holderConjugate_coe_iff
conjExponent πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
NNReal.HolderConjugate
NNReal.conjExponent
β€”NNReal.holderConjugate_iff_eq_conjExponent
conjExponent_eq πŸ“–mathematicalNNReal.HolderConjugateNNReal.conjExponentβ€”conjugate_eq
conjugate_eq πŸ“–mathematicalNNReal.HolderConjugateNNReal
NNReal.instDiv
NNReal.instSub
instOneNNReal
β€”LT.lt.le
Real.HolderTriple.lt
coe
Nat.cast_one
Real.HolderConjugate.conjugate_eq
NNReal.coe_one
NNReal.coe_sub
div_conj_eq_sub_one πŸ“–mathematicalNNReal.HolderConjugateNNReal
NNReal.instDiv
NNReal.instSub
instOneNNReal
β€”Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
NNReal.HolderTriple.ne_zero
symm
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
sub_one_mul_conj
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
inv_add_inv_ennreal πŸ“–mathematicalNNReal.HolderConjugateENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
NNReal
NNReal.instInv
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”Nat.cast_one
inv_add_inv_eq_one
inv_add_inv_eq_one πŸ“–mathematicalNNReal.HolderConjugateNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNReal.instInv
instOneNNReal
β€”NNReal.HolderTriple.inv_add_inv_eq_inv
inv_one
inv_inv πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
NNReal.HolderConjugate
NNReal.instInv
β€”inv_inv
inv_one
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
inv_one_sub_inv πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
instOneNNReal
NNReal.HolderConjugate
NNReal.instInv
NNReal.instSub
β€”NNReal.holderConjugate_iff
one_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
inv_inv
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
NNReal.instCanonicallyOrderedAdd
NNReal.addLeftMono
NNReal.instOrderedSub
LT.lt.le
mul_eq_add πŸ“–mathematicalNNReal.HolderConjugateNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toAdd
β€”inv_one
mul_one
mul_add
Distrib.leftDistribClass
mul_inv_cancelβ‚€
NNReal.HolderTriple.ne_zero
add_mul
Distrib.rightDistribClass
one_mul
inv_mul_cancel_rightβ‚€
symm
add_comm
NNReal.HolderTriple.inv_eq
one_sub_inv πŸ“–mathematicalNNReal.HolderConjugateNNReal
NNReal.instSub
instOneNNReal
NNReal.instInv
β€”tsub_eq_of_eq_add
NNReal.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftReflectLT
inv_add_inv_eq_one
symm
one_sub_inv_inv πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
instOneNNReal
NNReal.HolderConjugate
NNReal.instInv
NNReal.instSub
β€”symm
inv_one_sub_inv
sub_one_mul_conj πŸ“–mathematicalNNReal.HolderConjugateNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNReal.instSub
instOneNNReal
β€”eq_div_iff
sub_one_ne_zero
conjugate_eq
mul_comm
sub_one_ne_zero πŸ“–β€”NNReal.HolderConjugateβ€”β€”LT.lt.ne'
sub_one_pos
sub_one_pos πŸ“–mathematicalNNReal.HolderConjugateNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instSub
instOneNNReal
β€”tsub_pos_of_lt
NNReal.instCanonicallyOrderedAdd
NNReal.instOrderedSub
NNReal.HolderTriple.lt
two_two πŸ“–mathematicalβ€”NNReal.HolderConjugate
NNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
inv_one
one_div
add_halves
ZeroLEOneClass.neZero.two
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
NNReal.addLeftMono
zero_lt_two

NNReal.HolderTriple

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ennreal πŸ“–mathematicalNNReal.HolderTripleENNReal.HolderTriple
ENNReal.ofNNReal
β€”ENNReal.holderTriple_coe_iff
holderConjugate_div_div πŸ“–mathematicalNNReal.HolderTripleNNReal.HolderConjugate
NNReal
NNReal.instDiv
β€”div_eq_mul_inv
mul_inv_rev
inv_inv
Distrib.leftDistribClass
inv_add_inv_eq_inv
mul_inv_cancelβ‚€
ne_zero'
inv_one
left_pos
pos'
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
right_pos
inv_add_inv_eq_inv πŸ“–mathematicalNNReal.HolderTripleNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNReal.instInv
β€”β€”
inv_eq πŸ“–mathematicalNNReal.HolderTripleNNReal
NNReal.instInv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”inv_add_inv_eq_inv
inv_inv_add_inv πŸ“–mathematicalNNReal.HolderTripleNNReal
NNReal.instInv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”Real.HolderTriple.inv_inv_add_inv
coe
inv_lt_inv πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instInv
β€”Real.HolderTriple.inv_lt_inv
coe
inv_ne_zero πŸ“–β€”NNReal.HolderTripleβ€”β€”LT.lt.ne'
inv_pos
inv_ne_zero' πŸ“–β€”NNReal.HolderTripleβ€”β€”LT.lt.ne'
inv_pos'
inv_nonneg πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instInv
β€”LT.lt.le
inv_pos
inv_nonneg' πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instInv
β€”LT.lt.le
inv_pos'
inv_pos πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instInv
β€”inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
pos
inv_pos' πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instInv
β€”inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
pos'
inv_sub_inv_eq_inv πŸ“–mathematicalNNReal.HolderTripleNNReal
NNReal.instSub
NNReal.instInv
β€”LT.lt.le
inv_lt_inv
symm
Real.HolderTriple.inv_sub_inv_eq_inv
coe
left_pos πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”β€”
lt πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
β€”Real.HolderTriple.lt
coe
ne_zero πŸ“–β€”NNReal.HolderTripleβ€”β€”LT.lt.ne'
pos
ne_zero' πŸ“–β€”NNReal.HolderTripleβ€”β€”LT.lt.ne'
pos'
nonneg πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”LT.lt.le
pos
nonneg' πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”LT.lt.le
pos'
of_pos πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.HolderTriple
NNReal.instInv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”inv_inv
one_div_add_one_div πŸ“–mathematicalNNReal.HolderTripleNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNReal.instDiv
instOneNNReal
β€”Nat.cast_one
Real.HolderTriple.one_div_add_one_div
coe
one_div_eq πŸ“–mathematicalNNReal.HolderTripleNNReal
NNReal.instDiv
instOneNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”one_div_add_one_div
one_div_ne_zero πŸ“–β€”NNReal.HolderTripleβ€”β€”ne_of_gt
one_div_pos
one_div_ne_zero' πŸ“–β€”NNReal.HolderTripleβ€”β€”ne_of_gt
one_div_pos'
one_div_nonneg πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instDiv
instOneNNReal
β€”le_of_lt
one_div_pos
one_div_nonneg' πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instDiv
instOneNNReal
β€”le_of_lt
one_div_pos'
one_div_pos πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instDiv
instOneNNReal
β€”one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
pos
one_div_pos' πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instDiv
instOneNNReal
β€”one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
pos'
pos πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”left_pos
pos' πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftMono
inv_pos
symm
inv_add_inv_eq_inv
right_pos πŸ“–mathematicalNNReal.HolderTripleNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”β€”

Real

Definitions

NameCategoryTheorems
HolderConjugate πŸ“–MathDef
14 mathmath: ENNReal.HolderConjugate.toReal_iff, HolderTriple.holderConjugate_div_div, HolderConjugate.inv_inv, HolderConjugate.two_two, NNReal.HolderConjugate.coe, holderConjugate_iff, NNReal.holderConjugate_coe_iff, HolderConjugate.one_sub_inv_inv, HolderConjugate.inv_one_sub_inv, ENNReal.HolderConjugate.toReal, holderConjugate_comm, holderConjugate_one_div, holderConjugate_iff_eq_conjExponent, HolderConjugate.conjExponent
HolderTriple πŸ“–CompData
6 mathmath: holderTriple_iff, HolderTriple.of_pos, ENNReal.HolderTriple.toReal_iff, NNReal.HolderTriple.coe, NNReal.holderTriple_coe_iff, ENNReal.HolderTriple.toReal
conjExponent πŸ“–CompOp
2 mathmath: HolderConjugate.conjExponent_eq, HolderConjugate.conjExponent

Theorems

NameKindAssumesProvesValidatesDepends On
holderConjugate_comm πŸ“–mathematicalβ€”HolderConjugateβ€”HolderConjugate.symm
holderConjugate_iff πŸ“–mathematicalβ€”HolderConjugate
Real
instLT
instOne
instAdd
instInv
β€”HolderTriple.lt
HolderConjugate.inv_add_inv_eq_one
LT.lt.trans
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
inv_one
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
inv_lt_oneβ‚€
eq_sub_of_add_eq'
holderConjugate_iff_eq_conjExponent πŸ“–mathematicalReal
instLT
instOne
HolderConjugate
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”HolderConjugate.conjugate_eq
holderConjugate_iff
inv_div
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
add_sub_cancel
holderConjugate_one_div πŸ“–mathematicalReal
instLT
instZero
instAdd
instOne
HolderConjugate
DivInvMonoid.toDiv
instDivInvMonoid
β€”one_div
HolderConjugate.inv_inv
holderTriple_iff πŸ“–mathematicalβ€”HolderTriple
Real
instAdd
instInv
instLT
instZero
β€”β€”

Real.HolderConjugate

Theorems

NameKindAssumesProvesValidatesDepends On
conjExponent πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.HolderConjugate
Real.conjExponent
β€”Real.holderConjugate_iff_eq_conjExponent
conjExponent_eq πŸ“–mathematicalReal.HolderConjugateReal.conjExponentβ€”conjugate_eq
conjugate_eq πŸ“–mathematicalReal.HolderConjugateReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instOne
β€”Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Real.HolderTriple.ne_zero
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Real.HolderTriple.inv_sub_inv_eq_inv
symm
inv_inv
div_conj_eq_sub_one πŸ“–mathematicalReal.HolderConjugateReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instOne
β€”Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Real.HolderTriple.ne_zero
symm
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
sub_one_mul_conj
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
ennrealOfReal πŸ“–mathematicalReal.HolderConjugateENNReal.HolderConjugate
ENNReal.ofReal
β€”ENNReal.ofReal_one
Real.HolderTriple.ennrealOfReal
inv_add_inv_ennreal πŸ“–mathematicalReal.HolderConjugateENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
ENNReal.ofReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”ENNReal.ofReal_one
ENNReal.ofReal_inv_of_pos
Real.HolderTriple.pos
symm
ENNReal.ofReal_add
Real.HolderTriple.inv_nonneg
inv_add_inv_eq_one
inv_add_inv_eq_one πŸ“–mathematicalReal.HolderConjugateReal
Real.instAdd
Real.instInv
Real.instOne
β€”Real.HolderTriple.inv_add_inv_eq_inv
inv_one
inv_inv πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instAdd
Real.instOne
Real.HolderConjugate
Real.instInv
β€”inv_inv
inv_one
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_one_sub_inv πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instOne
Real.HolderConjugate
Real.instInv
Real.instSub
β€”Real.holderConjugate_iff
one_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_inv
add_sub_cancel
inv_sub_one πŸ“–mathematicalReal.HolderConjugateReal
Real.instSub
Real.instInv
Real.instOne
Real.instNeg
β€”neg_sub
one_sub_inv
mul_eq_add πŸ“–mathematicalReal.HolderConjugateReal
Real.instMul
Real.instAdd
β€”sub_mul
one_mul
sub_one_mul_conj
one_sub_inv πŸ“–mathematicalReal.HolderConjugateReal
Real.instSub
Real.instOne
Real.instInv
β€”sub_eq_of_eq_add
inv_add_inv_eq_one
symm
one_sub_inv_inv πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instOne
Real.HolderConjugate
Real.instInv
Real.instSub
β€”symm
inv_one_sub_inv
sub_one_mul_conj πŸ“–mathematicalReal.HolderConjugateReal
Real.instMul
Real.instSub
Real.instOne
β€”eq_div_iff
sub_one_ne_zero
conjugate_eq
mul_comm
sub_one_ne_zero πŸ“–β€”Real.HolderConjugateβ€”β€”LT.lt.ne'
sub_one_pos
sub_one_pos πŸ“–mathematicalReal.HolderConjugateReal
Real.instLT
Real.instZero
Real.instSub
Real.instOne
β€”sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.HolderTriple.lt
toNNReal πŸ“–mathematicalReal.HolderConjugateNNReal.HolderConjugate
Real.toNNReal
β€”Real.toNNReal_one
Real.HolderTriple.toNNReal
two_two πŸ“–mathematicalβ€”Real.HolderConjugate
Real
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid

Real.HolderTriple

Theorems

NameKindAssumesProvesValidatesDepends On
ennrealOfReal πŸ“–mathematicalReal.HolderTripleENNReal.HolderTriple
ENNReal.ofReal
β€”ENNReal.ofReal_add
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
nonneg
symm
ENNReal.ofReal_inv_of_pos
pos
pos'
inv_add_inv_eq_inv
holderConjugate_div_div πŸ“–mathematicalReal.HolderTripleReal.HolderConjugate
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”div_eq_mul_inv
mul_inv_rev
inv_inv
Distrib.leftDistribClass
inv_add_inv_eq_inv
mul_inv_cancelβ‚€
ne_zero'
inv_one
left_pos
pos'
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
right_pos
inv_add_inv_eq_inv πŸ“–mathematicalReal.HolderTripleReal
Real.instAdd
Real.instInv
β€”β€”
inv_eq πŸ“–mathematicalReal.HolderTripleReal
Real.instInv
Real.instAdd
β€”inv_add_inv_eq_inv
inv_inv_add_inv πŸ“–mathematicalReal.HolderTripleReal
Real.instInv
Real.instAdd
β€”inv_add_inv_eq_inv
inv_inv
inv_lt_inv πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instInv
β€”add_zero
add_lt_add_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
inv_pos
symm
inv_add_inv_eq_inv
inv_ne_zero πŸ“–β€”Real.HolderTripleβ€”β€”LT.lt.ne'
inv_pos
inv_ne_zero' πŸ“–β€”Real.HolderTripleβ€”β€”LT.lt.ne'
inv_pos'
inv_nonneg πŸ“–mathematicalReal.HolderTripleReal
Real.instLE
Real.instZero
Real.instInv
β€”LT.lt.le
inv_pos
inv_nonneg' πŸ“–mathematicalReal.HolderTripleReal
Real.instLE
Real.instZero
Real.instInv
β€”LT.lt.le
inv_pos'
inv_pos πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
Real.instInv
β€”inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pos
inv_pos' πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
Real.instInv
β€”inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pos'
inv_sub_inv_eq_inv πŸ“–mathematicalReal.HolderTripleReal
Real.instSub
Real.instInv
β€”sub_eq_of_eq_add
inv_eq
left_pos πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
β€”β€”
lt πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
β€”inv_inv
inv_strictAntiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
inv_pos
inv_lt_inv
ne_zero πŸ“–β€”Real.HolderTripleβ€”β€”LT.lt.ne'
pos
ne_zero' πŸ“–β€”Real.HolderTripleβ€”β€”LT.lt.ne'
pos'
nonneg πŸ“–mathematicalReal.HolderTripleReal
Real.instLE
Real.instZero
β€”LT.lt.le
pos
nonneg' πŸ“–mathematicalReal.HolderTripleReal
Real.instLE
Real.instZero
β€”LT.lt.le
pos'
of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.HolderTriple
Real.instInv
Real.instAdd
β€”inv_inv
one_div_add_one_div πŸ“–mathematicalReal.HolderTripleReal
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”one_div
inv_add_inv_eq_inv
one_div_eq πŸ“–mathematicalReal.HolderTripleReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instAdd
β€”one_div_add_one_div
one_div_ne_zero πŸ“–β€”Real.HolderTripleβ€”β€”ne_of_gt
one_div_pos
one_div_ne_zero' πŸ“–β€”Real.HolderTripleβ€”β€”ne_of_gt
one_div_pos'
one_div_nonneg πŸ“–mathematicalReal.HolderTripleReal
Real.instLE
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”le_of_lt
one_div_pos
one_div_nonneg' πŸ“–mathematicalReal.HolderTripleReal
Real.instLE
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”le_of_lt
one_div_pos'
one_div_pos πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pos
one_div_pos' πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pos'
pos πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
β€”left_pos
pos' πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
β€”inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
inv_pos
symm
inv_add_inv_eq_inv
right_pos πŸ“–mathematicalReal.HolderTripleReal
Real.instLT
Real.instZero
β€”β€”
toNNReal πŸ“–mathematicalReal.HolderTripleNNReal.HolderTriple
Real.toNNReal
β€”sup_of_le_left
nonneg
symm
nonneg'

---

← Back to Index