Documentation

Mathlib.Data.Real.ConjExponents

Real conjugate exponents #

This file defines Hölder triple and Hölder conjugate exponents in and ℝ≥0. Real numbers p, q and r form a Hölder triple if 0 < p and 0 < q and p⁻¹ + q⁻¹ = r⁻¹ (which of course implies 0 < r). We say p and q are Hölder conjugate if p, q and 1 are a Hölder triple. In this case, 1 < p and 1 < q. This property shows up often in analysis, especially when dealing with L^p spaces.

These notions mimic the same notions for extended nonnegative reals where p q r : ℝ≥0∞ are allowed to take the values 0 and .

Main declarations #

TODO #

structure Real.HolderTriple (p q r : ) :

Real numbers p q r : ℝ are said to be a Hölder triple if p and q are positive and p⁻¹ + q⁻¹ = r⁻¹.

Instances For
    @[reducible, inline]
    abbrev Real.HolderConjugate (p q : ) :

    Real numbers p q : ℝ are Hölder conjugate if they are positive and satisfy the equality p⁻¹ + q⁻¹ = 1. This is an abbreviation for Real.HolderTriple p q 1. This condition shows up in many theorems in analysis, notably related to L^p norms.

    It is equivalent that 1 < p and p⁻¹ + q⁻¹ = 1. See Real.holderConjugate_iff.

    Equations
      Instances For

        The conjugate exponent of p is q = p / (p-1), so that p⁻¹ + q⁻¹ = 1.

        Equations
          Instances For
            theorem Real.HolderTriple.of_pos {p q : } (hp : 0 < p) (hq : 0 < q) :
            theorem Real.HolderTriple.symm {p q r : } (h : p.HolderTriple q r) :
            theorem Real.HolderTriple.pos {p q r : } (h : p.HolderTriple q r) :
            0 < p
            theorem Real.HolderTriple.ne_zero {p q r : } (h : p.HolderTriple q r) :
            p 0
            theorem Real.HolderTriple.one_div_ne_zero {p q r : } (h : p.HolderTriple q r) :
            1 / p 0
            theorem Real.HolderTriple.pos' {p q r : } (h : p.HolderTriple q r) :
            0 < r

            For r, instead of p

            theorem Real.HolderTriple.nonneg' {p q r : } (h : p.HolderTriple q r) :
            0 r

            For r, instead of p

            theorem Real.HolderTriple.ne_zero' {p q r : } (h : p.HolderTriple q r) :
            r 0

            For r, instead of p

            theorem Real.HolderTriple.inv_pos' {p q r : } (h : p.HolderTriple q r) :
            0 < r⁻¹

            For r, instead of p

            theorem Real.HolderTriple.inv_nonneg' {p q r : } (h : p.HolderTriple q r) :

            For r, instead of p

            theorem Real.HolderTriple.inv_ne_zero' {p q r : } (h : p.HolderTriple q r) :

            For r, instead of p

            theorem Real.HolderTriple.one_div_pos' {p q r : } (h : p.HolderTriple q r) :
            0 < 1 / r

            For r, instead of p

            theorem Real.HolderTriple.one_div_nonneg' {p q r : } (h : p.HolderTriple q r) :
            0 1 / r

            For r, instead of p

            theorem Real.HolderTriple.one_div_ne_zero' {p q r : } (h : p.HolderTriple q r) :
            1 / r 0

            For r, instead of p

            theorem Real.HolderTriple.one_div_add_one_div {p q r : } (h : p.HolderTriple q r) :
            1 / p + 1 / q = 1 / r
            theorem Real.HolderTriple.one_div_eq {p q r : } (h : p.HolderTriple q r) :
            1 / r = 1 / p + 1 / q
            theorem Real.HolderTriple.lt {p q r : } (h : p.HolderTriple q r) :
            r < p
            theorem Real.HolderConjugate.inv_inv {a b : } (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
            theorem Real.HolderConjugate.inv_one_sub_inv {a : } (ha₀ : 0 < a) (ha₁ : a < 1) :
            theorem Real.HolderConjugate.one_sub_inv_inv {a : } (ha₀ : 0 < a) (ha₁ : a < 1) :
            theorem Real.holderConjugate_one_div {a b : } (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
            (1 / a).HolderConjugate (1 / b)
            structure NNReal.HolderTriple (p q r : NNReal) :

            Nonnegative real numbers p q r : ℝ≥0 are said to be a Hölder triple if p and q are positive and p⁻¹ + q⁻¹ = r⁻¹.

            Instances For
              @[reducible, inline]

              Nonnegative real numbers p q : ℝ≥0 are Hölder conjugate if they are positive and satisfy the equality p⁻¹ + q⁻¹ = 1. This is an abbreviation for NNReal.HolderTriple p q 1. This condition shows up in many theorems in analysis, notably related to L^p norms.

              It is equivalent that 1 < p and p⁻¹ + q⁻¹ = 1. See NNReal.holderConjugate_iff.

              Equations
                Instances For

                  The conjugate exponent of p is q = p/(p-1), so that p⁻¹ + q⁻¹ = 1.

                  Equations
                    Instances For
                      @[simp]
                      theorem NNReal.holderTriple_coe_iff {p q r : NNReal} :
                      (↑p).HolderTriple q r p.HolderTriple q r
                      theorem NNReal.HolderTriple.coe {p q r : NNReal} :
                      p.HolderTriple q r(↑p).HolderTriple q r

                      Alias of the reverse direction of NNReal.holderTriple_coe_iff.

                      Alias of the reverse direction of NNReal.holderConjugate_coe_iff.

                      theorem NNReal.HolderTriple.of_pos {p q : NNReal} (hp : 0 < p) (hq : 0 < q) :
                      theorem NNReal.HolderTriple.symm {p q r : NNReal} (h : p.HolderTriple q r) :
                      theorem NNReal.HolderTriple.ne_zero {p q r : NNReal} (h : p.HolderTriple q r) :
                      p 0
                      theorem NNReal.HolderTriple.pos' {p q r : NNReal} (h : p.HolderTriple q r) :
                      0 < r

                      For r, instead of p

                      theorem NNReal.HolderTriple.nonneg' {p q r : NNReal} (h : p.HolderTriple q r) :
                      0 r

                      For r, instead of p

                      theorem NNReal.HolderTriple.ne_zero' {p q r : NNReal} (h : p.HolderTriple q r) :
                      r 0

                      For r, instead of p

                      theorem NNReal.HolderTriple.inv_pos' {p q r : NNReal} (h : p.HolderTriple q r) :
                      0 < r⁻¹

                      For r, instead of p

                      theorem NNReal.HolderTriple.inv_nonneg' {p q r : NNReal} (h : p.HolderTriple q r) :

                      For r, instead of p

                      For r, instead of p

                      theorem NNReal.HolderTriple.one_div_pos' {p q r : NNReal} (h : p.HolderTriple q r) :
                      0 < 1 / r

                      For r, instead of p

                      theorem NNReal.HolderTriple.one_div_nonneg' {p q r : NNReal} (h : p.HolderTriple q r) :
                      0 1 / r

                      For r, instead of p

                      theorem NNReal.HolderTriple.one_div_ne_zero' {p q r : NNReal} (h : p.HolderTriple q r) :
                      1 / r 0

                      For r, instead of p

                      theorem NNReal.HolderTriple.one_div_eq {p q r : NNReal} (h : p.HolderTriple q r) :
                      1 / r = 1 / p + 1 / q
                      theorem NNReal.HolderTriple.lt {p q r : NNReal} (h : p.HolderTriple q r) :
                      r < p
                      theorem NNReal.HolderConjugate.inv_inv {a b : NNReal} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
                      theorem NNReal.holderConjugate_one_div {a b : NNReal} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
                      (1 / a).HolderConjugate (1 / b)
                      noncomputable def ENNReal.conjExponent (p : ENNReal) :

                      The conjugate exponent of p is q = 1 + (p - 1)⁻¹, so that p⁻¹ + q⁻¹ = 1.

                      Equations
                        Instances For
                          @[simp]
                          theorem ENNReal.holderTriple_coe_iff {p q r : NNReal} (hr : r 0) :
                          (↑p).HolderTriple q r p.HolderTriple q r
                          theorem NNReal.HolderTriple.coe_ennreal {p q r : NNReal} (hr : r 0) :
                          p.HolderTriple q r(↑p).HolderTriple q r

                          Alias of the reverse direction of ENNReal.holderTriple_coe_iff.