Documentation Verification Report

Rel

πŸ“ Source: Mathlib/Data/Rel.lean

Statistics

MetricCount
DefinitionsRel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, graph, tupleGraph, Rel, Rel, Rel, Rel, Rel, SetRel, IsIrrefl, IsRefl, IsSymm, IsTrans, IsWellFounded, cod, comp, core, dom, id, image, inv, preimage, restrictDomain, symmetrize, Β«term_~[_]_Β», Β«term_β—‹_Β», Rel, Rel, Rel, Rel, Rel, Rel, Rel
43
Theoremsgraph_inv, graph_comp, graph_id, graph_inj, graph_injective, mem_graph, relComp, image_eq, preimage_eq, preimage_eq_core, comp, sInter, sInter, sInter, cod_empty, cod_eq_empty_iff, cod_inv, cod_mono, cod_univ, comm, comp_assoc, comp_empty, comp_eq_self, comp_iUnion, comp_id, comp_sUnion, comp_subset_comp, comp_subset_comp_left, comp_subset_comp_right, comp_subset_self, comp_univ, core_comp, core_id, core_inter, core_mono, core_subset_core, core_union_subset, core_univ, dom_empty, dom_eq_empty_iff, dom_inv, dom_mono, dom_univ, empty_comp, exists_eq_singleton_of_prod_subset_id, exists_graph_eq_iff, iUnion_comp, id_comp, id_subset, id_subset_iff, image_comp, image_core_gc, image_empty_left, image_empty_right, image_eq_biUnion, image_eq_cod_of_dom_subset, image_iUnion, image_id, image_inter_dom, image_inter_subset, image_inv, image_mono, image_sUnion, image_subset_iff, image_subset_image, image_subset_image_left, image_union, image_univ_left, image_univ_right, instIsIrreflSetOfProdMatch_1PropOfIrrefl, instIsSymmInv, instIsTransSetOfProdMatch_1PropOfIsTrans, inter_cod_subset_image_preimage, inter_dom_subset_preimage_image, inv_comp, inv_empty, inv_eq_self, inv_eq_self_iff, inv_id, inv_inv, inv_mono, inv_univ, irrefl, isRefl_iInter, isRefl_inter, isRefl_mono, isRefl_preimage, isRefl_univ, isSymm_comp_inv, isSymm_comp_self, isSymm_empty, isSymm_iInter, isSymm_id, isSymm_image, isSymm_inter, isSymm_inv_comp, isSymm_preimage, isSymm_symmetrize, isSymm_univ, isTrans_empty, isTrans_iInter, isTrans_id, isTrans_iff_comp_subset_self, isTrans_inter, isTrans_preimage, isTrans_singleton, isTrans_symmetrize, isTrans_univ, left_subset_comp, mem_cod, mem_comp, mem_core, mem_dom, mem_id, mem_image, mem_inv, mem_preimage, preimage_comp, preimage_empty_left, preimage_empty_right, preimage_eq_biUnion, preimage_eq_dom_of_cod_subset, preimage_eq_image, preimage_iUnion, preimage_id, preimage_inter_cod, preimage_inter_subset, preimage_inv, preimage_mono, preimage_sUnion, preimage_subset_preimage, preimage_subset_preimage_left, preimage_union, preimage_univ_left, preimage_univ_right, prodMk_mem_comp, prod_comp_prod, prod_comp_prod_of_disjoint, prod_comp_prod_of_inter_nonempty, prod_subset_comm, refl, rfl, right_subset_comp, sUnion_comp, self_subset_image, self_subset_preimage, subset_iterate_comp, subset_symmetrize, symmetrize_mono, symmetrize_subset_inv, symmetrize_subset_self, trans, univ_comp
153
Total196

AddConGen

Definitions

NameCategoryTheorems
Rel πŸ“–CompDataβ€”

AlgebraicGeometry.Scheme.GlueData

Definitions

NameCategoryTheorems
Rel πŸ“–MathDef
1 mathmath: ΞΉ_eq_iff

CategoryTheory.FreeBicategory

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
8 mathmath: mk_left_unitor_inv, mk_right_unitor_inv, mk_id, mk_left_unitor_hom, mk_associator_hom, mk_associator_inv, lift_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, mk_right_unitor_hom

CategoryTheory.Limits.Types.FilteredColimit

Definitions

NameCategoryTheorems
Rel πŸ“–MathDef
4 mathmath: colimit_eq_iff_aux, rel_eq_eqvGen_colimitTypeRel, rel_equiv, rel_of_colimitTypeRel

CategoryTheory.Limits.Types.Pushout

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
1 mathmath: quot_mk_eq_iff

CliffordAlgebra

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
21 mathmath: involute_prod_map_ΞΉ, contractRight_mul_ΞΉ, changeFormAux_changeFormAux, EquivEven.ΞΉ_eq_v_add_smul_e0, foldr'Aux_foldr'Aux, spinGroup.conjAct_smul_range_ΞΉ, submodule_comap_mul_reverse, submodule_map_pow_reverse, contractLeft_ΞΉ_mul, star_smul, CliffordAlgebraQuaternion.ofQuaternion_mk, pinGroup.conjAct_smul_range_ΞΉ, submodule_map_mul_reverse, evenOdd_mul_le, iSup_ΞΉ_range_eq_top, submodule_comap_pow_reverse, ExteriorAlgebra.ΞΉMulti_succ_curryLeft, ExteriorAlgebra.invertibleAlgebraMapEquiv_symm_apply_invOf_toQuot, exteriorPower.zeroEquiv_symm_apply, contractLeftAux_contractLeftAux, lipschitzGroup.conjAct_smul_range_ΞΉ

ComplexShape

Definitions

NameCategoryTheorems
Rel πŸ“–MathDef
21 mathmath: exists_distinct_next_or, exists_distinct_prev_or, down_Rel, up_Rel, symm_Rel, not_rel_self, down'_Rel, AlgebraicTopology.DoldKan.cs_down_0_not_rel_left, down'_mk, down_mk, AlgebraicTopology.DoldKan.c_mk, HomologicalComplex.alternatingConst_d, not_rel_of_eq, subsingleton_prev, HasNoLoop.not_rel_self, ext_iff, subsingleton_next, refl_Rel, Embedding.rel_iff, Homotopy.nullHomotopy'_hom, up'_Rel

ConGen

Definitions

NameCategoryTheorems
Rel πŸ“–CompDataβ€”

Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
graph_inv πŸ“–mathematicalβ€”Function.graph
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
SetRel.inv
β€”Set.ext
apply_symm_apply
symm_apply_apply

FreeAlgebra

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
2 mathmath: ΞΉ_def, quot_mk_eq_ΞΉ

FreeLieAlgebra

Definitions

NameCategoryTheorems
Rel πŸ“–CompDataβ€”

Function

Definitions

NameCategoryTheorems
graph πŸ“–CompOp
14 mathmath: Set.image_eq, graph_inj, Filter.tendsto_iff_rtendsto, Set.preimage_eq, CategoryTheory.RelCat.rel_graphFunctor_map, graph_injective, Equiv.graph_inv, Set.preimage_eq_core, Set.TermDefinable₁.definableβ‚‚_graph, graph_id, mem_graph, Filter.tendsto_iff_rtendsto', SetRel.exists_graph_eq_iff, graph_comp
tupleGraph πŸ“–CompOp
1 mathmath: Set.TermDefinable.definable_tupleGraph

Theorems

NameKindAssumesProvesValidatesDepends On
graph_comp πŸ“–mathematicalβ€”graph
SetRel.comp
β€”Set.ext
graph_id πŸ“–mathematicalβ€”graph
SetRel.id
β€”β€”
graph_inj πŸ“–mathematicalβ€”graphβ€”graph_injective
graph_injective πŸ“–mathematicalβ€”SetRel
graph
β€”β€”
mem_graph πŸ“–mathematicalβ€”SetRel
Set.instMembership
graph
β€”β€”

Function.Coequalizer

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
1 mathmath: TopCat.GlueData.eqvGen_of_Ο€_eq

Monoid.CoprodI

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
1 mathmath: of_apply

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
relComp πŸ“–mathematicalMonotone
SetRel
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
SetRel.compβ€”β€”

Multiset

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
25 mathmath: rel_of_forall, rel_flip, rel_map_left, rel_refl_of_refl_on, UniqueFactorizationMonoid.factors_pow, UniqueFactorizationMonoid.factors_rel_of_associated, UniqueFactorizationMonoid.factors_unique, rel_cons_left, rel_map_right, mem_sections, rel_add_left, rel_replicate_left, Associates.rel_associated_iff_map_eq_map, prime_factors_unique, rel_add_right, rel_flip_eq, rel_eq, rel_iff, rel_eq_refl, rel_cons_right, rel_replicate_right, rel_zero_right, UniqueFactorizationMonoid.factors_mul, rel_zero_left, rel_map

RingConGen

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
1 mathmath: RingQuot.eqvGen_rel_eq

RingQuot

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
14 mathmath: add_quot, preLift_def, LinearAlgebra.FreeProduct.ΞΉ_apply, mkRingHom_def, mul_quot, pow_quot, zero_quot, sub_quot, smul_quot, preLiftAlgHom_def, ExteriorAlgebra.invertibleAlgebraMapEquiv_symm_apply_invOf_toQuot, one_quot, neg_quot, eqvGen_rel_eq

Set

Theorems

NameKindAssumesProvesValidatesDepends On
image_eq πŸ“–mathematicalβ€”image
SetRel.image
Function.graph
β€”β€”
preimage_eq πŸ“–mathematicalβ€”preimage
SetRel.preimage
Function.graph
β€”β€”
preimage_eq_core πŸ“–mathematicalβ€”preimage
SetRel.core
Function.graph
β€”β€”

SetRel

Definitions

NameCategoryTheorems
IsIrrefl πŸ“–MathDef
1 mathmath: instIsIrreflSetOfProdMatch_1PropOfIrrefl
IsRefl πŸ“–MathDef
9 mathmath: IsRefl.comp, isRefl_of_mem_uniformity, isRefl_preimage, isRefl_univ, isRefl_inter, id_subset_iff, Dynamics.isRefl_dynEntourage, isRefl_hausdorffEntourage, isRefl_mono
IsSymm πŸ“–MathDef
34 mathmath: IsUltraUniformity.mem_nhds_iff_symm_trans, Dynamics.isSymm_dynEntourage, IsSymmetricRel.cauchyFilter_gen, comp_open_symm_mem_uniformity_sets, PseudoMetric.isSymm_closedBall, isSymm_id, closure_eq_uniformity, isSymm_inv_comp, PseudoMetric.isSymm_ball, CauchyFilter.isSymm_gen, isSymm_comp_inv, comp_symm_mem_uniformity_sets, UniformSpace.mem_nhds_iff_symm, isSymm_comp_self, UniformSpace.hasBasis_nhds, isSymm_symmetrize, uniformity_hasBasis_open_symmetric, isSymm_univ, isSymm_inter, isSymm_hausdorffEntourage, IsSymm_entourageProd, comp_comp_symm_mem_uniformity_sets, isSymm_preimage, PseudoMetric.isSymmetricRel_closedBall, PseudoMetric.isSymmetricRel_ball, isSymm_empty, UniformSpace.has_seq_basis, symm_of_uniformity, inv_eq_self_iff, IsUltraUniformity.hasBasis, instIsSymmInv, UniformSpace.hasBasis_symmetric, UniformSpace.hasBasis_nhds_prod, isSymm_image
IsTrans πŸ“–MathDef
20 mathmath: isTrans_preimage, CauchyFilter.isTrans_gen, IsUltraUniformity.mem_nhds_iff_symm_trans, isTrans_hausdorffEntourage, PseudoMetric.IsUltra.isTransitiveRel_closedBall, PseudoMetric.IsUltra.isTrans_closedBall, isTrans_entourageProd, PseudoMetric.IsUltra.isTransitiveRel_ball, isTrans_id, instIsTransSetOfProdMatch_1PropOfIsTrans, IsTransitiveRel.cauchyFilter_gen, PseudoMetric.IsUltra.isTrans_ball, IsTransitiveRel.entourageProd, isTrans_inter, isTrans_symmetrize, isTrans_empty, IsUltraUniformity.hasBasis, isTrans_singleton, isTrans_univ, isTrans_iff_comp_subset_self
IsWellFounded πŸ“–MathDef
2 mathmath: IsWellFounded.inv_of_finiteDimensional, IsWellFounded.of_finiteDimensional
cod πŸ“–CompOp
11 mathmath: cod_inv, cod_mono, preimage_inter_cod, mem_cod, inter_cod_subset_image_preimage, image_univ_right, dom_inv, cod_univ, cod_eq_empty_iff, cod_empty, univ_comp
comp πŸ“–CompOp
99 mathmath: Dynamics.coverEntropyInfEntourage_le_netEntropyInfEntourage, Dynamics.coverEntropyEntourage_le_coverEntropyInfEntourage, comp_subset_comp, comp3_mem_uniformity, comp_iUnion, comp_le_uniformity3, mem_comp, comp_subset_comp_right, compRel_mono, Filter.rcomap_compose, comp_symm_of_uniformity, UniformSpace.mem_ball_comp, prod_comp_prod_of_inter_nonempty, UniformSpace.Core.comp_mem_uniformity_sets, UniformSpace.comp, prodMk_mem_compRel, IsRefl.comp, Dynamics.IsDynCoverOf.iterate_le_pow, uniformity_lift_le_comp, prod_comp_prod, inv_comp, Filter.rcomap'_compose, sUnion_comp, compRel_right_mono, UniformSpace.mem_comp_of_mem_ball, comp_subset_comp_left, Dynamics.IsDynCoverOf.preimage, compRel_left_mono, Dynamics.coverMincard_closure_le, Filter.rcomap'_rcomap', Dynamics.coverEntropyEntourage_le_netEntropyEntourage, comp_open_symm_mem_uniformity_sets, id_comp, left_subset_comp, right_subset_compRel, closure_eq_uniformity, prod_comp_prod_of_disjoint, right_subset_comp, isSymm_inv_comp, comp_empty, comp_eq_self, comp_sUnion, Monotone.relComp, Dynamics.le_coverEntropyEntourage_image, lift'_comp_uniformity, subset_comp_self, core_comp, isSymm_comp_inv, comp_symm_mem_uniformity_sets, isTransitiveRel_iff_comp_subset_self, hausdorffEntourage_comp, isSymm_comp_self, compRel_assoc, preimage_comp, subset_iterate_compRel, Dynamics.IsDynCoverOf.coverEntropyEntourage_le_log_card_div, subset_comp_self_of_mem_uniformity, Dynamics.dynEntourage_comp_subset, comp_mem_uniformity_sets, Dynamics.IsDynCoverOf.closure, Dynamics.coverEntropyEntourage_le_log_coverMincard_div, Dynamics.coverMincard_le_pow, Dynamics.coverMincard_mul_le_pow, id_compRel, comp_subset_self, left_subset_compRel, eventually_uniformity_iterate_comp_subset, comp_le_uniformity, UniformSpace.mem_comp_comp, IsTransitiveRel.comp_eq_of_idRel_subset, Dynamics.coverMincard_le_netMaxcard, Dynamics.coverEntropyInfEntourage_closure, Filter.rmap_compose, Dynamics.coverEntropyEntourage_closure, Filter.rcomap_rcomap, comp_comp_symm_mem_uniformity_sets, mem_compRel, closure_eq_inter_uniformity, IsOpen.relComp, Monotone.compRel, Dynamics.mem_ball_dynEntourage_comp, prodMk_mem_comp, Dynamics.le_coverEntropyInfEntourage_image, empty_comp, CategoryTheory.RelCat.Hom.rel_comp, image_comp, iUnion_comp, comp_assoc, Dynamics.le_coverMincard_image, comp_univ, IsTransitiveRel.comp_subset_self, Filter.rmap_rmap, Function.graph_comp, UniformSpace.Core.comp, eventually_uniformity_comp_subset, subset_iterate_comp, comp_id, isTrans_iff_comp_subset_self, univ_comp
core πŸ“–CompOp
16 mathmath: image_subset_iff, core_union_subset, Filter.rtendsto_def, core_mono, core_id, Filter.rcomap_sets, image_core_gc, core_subset_core, mem_core, core_inter, core_comp, Set.preimage_eq_core, Filter.mem_rmap, core_univ, Filter.rmap_sets, rtendsto_nhds
dom πŸ“–CompOp
13 mathmath: preimage_univ_right, preimage_eq_dom_of_cod_subset, cod_inv, image_eq_cod_of_dom_subset, dom_mono, inter_dom_subset_preimage_image, dom_eq_empty_iff, dom_univ, dom_inv, image_inter_dom, dom_empty, mem_dom, comp_univ
id πŸ“–CompOp
32 mathmath: discreteUniformity_iff_eq_principal_relId, bot_uniformity, core_id, isCover_relId, id_comp, isSymm_id, discreteUniformity_iff_setRelId_mem_uniformity, discreteUniformity_iff_relId_mem_uniformity, discreteUniformity_iff_eq_principal_setRelId, isCover_id, DiscreteUniformity.relId_mem_uniformity, isTrans_id, DiscreteUniformity.eq_principal_setRelId, UniformSpace.uniformSpace_eq_bot, DiscreteUniformity.eq_principal_relId, discreteUniformity_iff_idRel_mem_uniformity, mem_id, Function.graph_id, discreteUniformity_iff_eq_principal_idRel, id_subset_iff, id_subset, hausdorffEntourage_id, DiscreteUniformity.idRel_mem_uniformity, image_id, refl_le_uniformity, inv_id, DiscreteUniformity.eq_principal_idRel, preimage_id, comap_uniformity_of_spaced_out, CategoryTheory.RelCat.Hom.rel_id, comp_id, UniformSpace.Core.refl
image πŸ“–CompOp
34 mathmath: Fintype.all_card_le_rel_image_card_iff_exists_injective, UniformSpace.closure_subset_image, IsClosed.relImage_of_isCompact, image_subset_iff, Set.image_eq, image_sUnion, image_empty_left, Filter.rcomap_sets, mem_image, image_core_gc, image_empty_right, image_subset_image_left, image_inter_subset, image_union, image_subset_image, self_subset_image, image_mono, mem_hausdorffEntourage, preimage_eq_image, Filter.rcomap'_sets, image_eq_biUnion, image_id, IsOpen.relImage, inter_dom_subset_preimage_image, inter_cod_subset_image_preimage, image_univ_right, image_inv, image_iUnion, image_univ_left, image_inter_dom, image_comp, preimage_inv, IsClosed.relImage_of_finite, image_entourageProd_prod
inv πŸ“–CompOp
33 mathmath: IsWellFounded.inv_of_finiteDimensional, IsOpen.relInv, IsClosed.relInv, inv_comp, finiteDimensional_inv, InfiniteDimensional.inv, isSymm_inv_comp, mem_inv, RelSeries.head_reverse, RelSeries.reverse_reverse, Equiv.graph_inv, isSymm_comp_inv, cod_inv, inv_hausdorffEntourage, inv_univ, symmetrize_subset_inv, RelSeries.last_reverse, RelSeries.reverse_length, RelSeries.reverse_apply, inv_eq_self, inv_entourageProd, inv_inv, inv_id, inv_eq_self_iff, dom_inv, infiniteDimensional_inv, image_inv, inv_empty, subset_symmetrize, inv_mono, instIsSymmInv, FiniteDimensional.inv, preimage_inv
preimage πŸ“–CompOp
37 mathmath: preimage_univ_right, preimage_union, preimage_eq_dom_of_cod_subset, self_subset_preimage, Set.preimage_eq, rtendsto'_nhds, IsClosed.relPreimage_of_isCompact, preimage_eq_biUnion, Filter.rtendsto'_def, preimage_inter_subset, Filter.TotallyBounded.exists_subset_of_mem, preimage_comp, mem_preimage, Filter.HasBasis.filter_totallyBounded_iff, IsOpen.relPreimage, preimage_inter_cod, image_eq_cod_of_dom_subset, mem_hausdorffEntourage, preimage_mono, preimage_eq_image, preimage_univ_left, preimage_iUnion, Filter.rcomap'_sets, preimage_entourageProd_prod, inter_dom_subset_preimage_image, preimage_empty_right, IsClosed.relPreimage_of_finite, preimage_sUnion, preimage_subset_preimage, inter_cod_subset_image_preimage, Filter.mem_rcomap', UniformSpace.closure_subset_preimage, image_inv, preimage_subset_preimage_left, preimage_id, preimage_inv, preimage_empty_left
restrictDomain πŸ“–CompOpβ€”
symmetrize πŸ“–CompOp
8 mathmath: IsTransitiveRel.symmetrizeRel, symmetrize_mem_uniformity, isSymm_symmetrize, symmetrize_subset_inv, symmetrize_mono, symmetrize_subset_self, isTrans_symmetrize, subset_symmetrize
Β«term_~[_]_Β» πŸ“–CompOpβ€”
Β«term_β—‹_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cod_empty πŸ“–mathematicalβ€”cod
SetRel
Set.instEmptyCollection
Set
β€”Set.ext
cod_eq_empty_iff πŸ“–mathematicalβ€”cod
Set
Set.instEmptyCollection
SetRel
β€”Set.eq_empty_iff_forall_notMem
cod_empty
cod_inv πŸ“–mathematicalβ€”cod
inv
dom
β€”β€”
cod_mono πŸ“–mathematicalSetRel
Set.instLE
Set
Set.instHasSubset
cod
β€”β€”
cod_univ πŸ“–mathematicalβ€”cod
Set.univ
β€”Set.ext
comm πŸ“–mathematicalβ€”SetRel
Set.instMembership
β€”comm_of
comp_assoc πŸ“–mathematicalβ€”compβ€”Set.ext
comp_empty πŸ“–mathematicalβ€”comp
SetRel
Set.instEmptyCollection
β€”Set.ext
comp_eq_self πŸ“–mathematicalβ€”compβ€”subset_antisymm
Set.instAntisymmSubset
comp_subset_self
left_subset_comp
comp_iUnion πŸ“–mathematicalβ€”comp
Set.iUnion
β€”Set.ext
comp_id πŸ“–mathematicalβ€”comp
id
β€”Set.ext
comp_sUnion πŸ“–mathematicalβ€”comp
Set.sUnion
Set.iUnion
SetRel
Set
Set.instMembership
β€”Set.ext
comp_subset_comp πŸ“–mathematicalSetRel
Set.instHasSubset
compβ€”β€”
comp_subset_comp_left πŸ“–mathematicalSetRel
Set.instHasSubset
compβ€”comp_subset_comp
Set.Subset.rfl
comp_subset_comp_right πŸ“–mathematicalSetRel
Set.instHasSubset
compβ€”comp_subset_comp
Set.Subset.rfl
comp_subset_self πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
comp
β€”trans
comp_univ πŸ“–mathematicalβ€”comp
Set.univ
setOf
Set
Set.instMembership
dom
β€”Set.ext
core_comp πŸ“–mathematicalβ€”core
comp
β€”Set.ext
core_id πŸ“–mathematicalβ€”core
id
β€”Set.ext
core_inter πŸ“–mathematicalβ€”core
Set
Set.instInter
β€”Set.ext
core_mono πŸ“–mathematicalβ€”Monotone
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
core
β€”core_subset_core
core_subset_core πŸ“–mathematicalSet
Set.instHasSubset
coreβ€”β€”
core_union_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instUnion
core
β€”Monotone.le_map_sup
core_mono
core_univ πŸ“–mathematicalβ€”core
Set.univ
β€”Set.ext
dom_empty πŸ“–mathematicalβ€”dom
SetRel
Set.instEmptyCollection
Set
β€”Set.ext
dom_eq_empty_iff πŸ“–mathematicalβ€”dom
Set
Set.instEmptyCollection
SetRel
β€”Set.eq_empty_iff_forall_notMem
dom_empty
dom_inv πŸ“–mathematicalβ€”dom
inv
cod
β€”β€”
dom_mono πŸ“–mathematicalSetRel
Set.instLE
Set
Set.instHasSubset
dom
β€”β€”
dom_univ πŸ“–mathematicalβ€”dom
Set.univ
β€”Set.ext
empty_comp πŸ“–mathematicalβ€”comp
SetRel
Set.instEmptyCollection
β€”Set.ext
exists_eq_singleton_of_prod_subset_id πŸ“–mathematicalSet.Nonempty
Set
Set.instHasSubset
SProd.sprod
Set.instSProd
id
Set.instSingletonSetβ€”β€”
exists_graph_eq_iff πŸ“–mathematicalβ€”ExistsUnique
SetRel
Function.graph
Set.instMembership
β€”Set.ext
ExistsUnique.unique
ExistsUnique.exists
iUnion_comp πŸ“–mathematicalβ€”comp
Set.iUnion
β€”Set.ext
id_comp πŸ“–mathematicalβ€”comp
id
β€”Set.ext
id_subset πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
id
β€”rfl
id_subset_iff πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
id
IsRefl
β€”id_subset
image_comp πŸ“–mathematicalβ€”image
comp
β€”Set.ext
image_core_gc πŸ“–mathematicalβ€”GaloisConnection
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
image
core
β€”image_subset_iff
image_empty_left πŸ“–mathematicalβ€”image
SetRel
Set.instEmptyCollection
Set
β€”Set.ext
image_empty_right πŸ“–mathematicalβ€”image
Set
Set.instEmptyCollection
β€”Set.ext
image_eq_biUnion πŸ“–mathematicalβ€”image
Set.iUnion
Set
Set.instMembership
setOf
SetRel
β€”Set.ext
image_eq_cod_of_dom_subset πŸ“–mathematicalSet
Set.instHasSubset
cod
preimage
dom
β€”Set.ext
image_iUnion πŸ“–mathematicalβ€”image
Set.iUnion
β€”Set.ext
image_id πŸ“–mathematicalβ€”image
id
β€”Set.ext
image_inter_dom πŸ“–mathematicalβ€”image
Set
Set.instInter
dom
β€”Set.ext
image_inter_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
image
Set.instInter
β€”Monotone.map_inf_le
image_mono
image_inv πŸ“–mathematicalβ€”image
inv
preimage
β€”β€”
image_mono πŸ“–mathematicalβ€”Monotone
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
image
β€”image_subset_image
image_sUnion πŸ“–mathematicalβ€”image
Set.sUnion
Set.iUnion
Set
Set.instMembership
β€”Set.ext
image_subset_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
image
core
β€”β€”
image_subset_image πŸ“–mathematicalSet
Set.instHasSubset
imageβ€”β€”
image_subset_image_left πŸ“–mathematicalSetRel
Set.instHasSubset
Set
image
β€”β€”
image_union πŸ“–mathematicalβ€”image
Set
Set.instUnion
β€”Set.ext
image_univ_left πŸ“–mathematicalSet.Nonemptyimage
Set.univ
β€”Set.ext
image_univ_right πŸ“–mathematicalβ€”image
Set.univ
cod
β€”Set.ext
instIsIrreflSetOfProdMatch_1PropOfIrrefl πŸ“–mathematicalβ€”IsIrrefl
setOf
β€”β€”
instIsSymmInv πŸ“–mathematicalβ€”IsSymm
inv
β€”inv_eq_self
instIsTransSetOfProdMatch_1PropOfIsTrans πŸ“–mathematicalβ€”IsTrans
setOf
β€”β€”
inter_cod_subset_image_preimage πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instInter
cod
image
preimage
β€”β€”
inter_dom_subset_preimage_image πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instInter
dom
preimage
image
β€”β€”
inv_comp πŸ“–mathematicalβ€”inv
comp
β€”Set.ext
inv_empty πŸ“–mathematicalβ€”inv
SetRel
Set.instEmptyCollection
β€”β€”
inv_eq_self πŸ“–mathematicalβ€”invβ€”Set.ext
comm
inv_eq_self_iff πŸ“–mathematicalβ€”inv
IsSymm
β€”inv_eq_self
inv_id πŸ“–mathematicalβ€”inv
id
β€”Set.ext
inv_inv πŸ“–mathematicalβ€”invβ€”β€”
inv_mono πŸ“–mathematicalSetRel
Set.instHasSubset
invβ€”β€”
inv_univ πŸ“–mathematicalβ€”inv
Set.univ
β€”β€”
irrefl πŸ“–mathematicalβ€”SetRel
Set.instMembership
β€”irrefl_of
isRefl_iInter πŸ“–mathematicalIsReflSet.iInterβ€”IsRefl.sInter
isRefl_inter πŸ“–mathematicalβ€”IsRefl
SetRel
Set.instInter
β€”rfl
isRefl_mono πŸ“–mathematicalSetRel
Set.instHasSubset
IsReflβ€”rfl
isRefl_preimage πŸ“–mathematicalβ€”IsRefl
Set.preimage
β€”rfl
isRefl_univ πŸ“–mathematicalβ€”IsRefl
Set.univ
β€”β€”
isSymm_comp_inv πŸ“–mathematicalβ€”IsSymm
comp
inv
β€”β€”
isSymm_comp_self πŸ“–mathematicalβ€”IsSymm
comp
β€”inv_eq_self
isSymm_comp_inv
isSymm_empty πŸ“–mathematicalβ€”IsSymm
SetRel
Set.instEmptyCollection
β€”β€”
isSymm_iInter πŸ“–mathematicalIsSymmSet.iInterβ€”IsSymm.sInter
isSymm_id πŸ“–mathematicalβ€”IsSymm
id
β€”β€”
isSymm_image πŸ“–mathematicalβ€”IsSymm
Set.image
β€”symm
isSymm_inter πŸ“–mathematicalβ€”IsSymm
SetRel
Set.instInter
β€”symm
isSymm_inv_comp πŸ“–mathematicalβ€”IsSymm
comp
inv
β€”isSymm_comp_inv
isSymm_preimage πŸ“–mathematicalβ€”IsSymm
Set.preimage
β€”symm
isSymm_symmetrize πŸ“–mathematicalβ€”IsSymm
symmetrize
β€”β€”
isSymm_univ πŸ“–mathematicalβ€”IsSymm
Set.univ
β€”β€”
isTrans_empty πŸ“–mathematicalβ€”IsTrans
SetRel
Set.instEmptyCollection
β€”β€”
isTrans_iInter πŸ“–mathematicalIsTransSet.iInterβ€”IsTrans.sInter
isTrans_id πŸ“–mathematicalβ€”IsTrans
id
β€”β€”
isTrans_iff_comp_subset_self πŸ“–mathematicalβ€”IsTrans
SetRel
Set.instHasSubset
comp
β€”comp_subset_self
isTrans_inter πŸ“–mathematicalβ€”IsTrans
SetRel
Set.instInter
β€”trans
isTrans_preimage πŸ“–mathematicalβ€”IsTrans
Set.preimage
β€”trans
isTrans_singleton πŸ“–mathematicalβ€”IsTrans
SetRel
Set.instSingletonSet
β€”β€”
isTrans_symmetrize πŸ“–mathematicalβ€”IsTrans
symmetrize
β€”trans
isTrans_univ πŸ“–mathematicalβ€”IsTrans
Set.univ
β€”β€”
left_subset_comp πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
comp
β€”comp_id
comp_subset_comp_right
id_subset
mem_cod πŸ“–mathematicalβ€”Set
Set.instMembership
cod
SetRel
β€”β€”
mem_comp πŸ“–mathematicalβ€”SetRel
Set.instMembership
comp
β€”β€”
mem_core πŸ“–mathematicalβ€”Set
Set.instMembership
core
β€”β€”
mem_dom πŸ“–mathematicalβ€”Set
Set.instMembership
dom
SetRel
β€”β€”
mem_id πŸ“–mathematicalβ€”SetRel
Set.instMembership
id
β€”β€”
mem_image πŸ“–mathematicalβ€”Set
Set.instMembership
image
SetRel
β€”β€”
mem_inv πŸ“–mathematicalβ€”SetRel
Set.instMembership
inv
β€”β€”
mem_preimage πŸ“–mathematicalβ€”Set
Set.instMembership
preimage
SetRel
β€”β€”
preimage_comp πŸ“–mathematicalβ€”preimage
comp
β€”Set.ext
preimage_empty_left πŸ“–mathematicalβ€”preimage
SetRel
Set.instEmptyCollection
Set
β€”Set.ext
preimage_empty_right πŸ“–mathematicalβ€”preimage
Set
Set.instEmptyCollection
β€”Set.ext
preimage_eq_biUnion πŸ“–mathematicalβ€”preimage
Set.iUnion
Set
Set.instMembership
setOf
SetRel
β€”Set.ext
preimage_eq_dom_of_cod_subset πŸ“–mathematicalSet
Set.instHasSubset
cod
preimage
dom
β€”Set.ext
preimage_eq_image πŸ“–mathematicalβ€”preimage
image
β€”preimage_inv
inv_eq_self
preimage_iUnion πŸ“–mathematicalβ€”preimage
Set.iUnion
β€”Set.ext
preimage_id πŸ“–mathematicalβ€”preimage
id
β€”Set.ext
preimage_inter_cod πŸ“–mathematicalβ€”preimage
Set
Set.instInter
cod
β€”Set.ext
preimage_inter_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
preimage
Set.instInter
β€”Monotone.map_inf_le
preimage_mono
preimage_inv πŸ“–mathematicalβ€”preimage
inv
image
β€”β€”
preimage_mono πŸ“–mathematicalβ€”Monotone
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
preimage
β€”preimage_subset_preimage
preimage_sUnion πŸ“–mathematicalβ€”preimage
Set.sUnion
Set.iUnion
Set
Set.instMembership
β€”Set.ext
preimage_subset_preimage πŸ“–mathematicalSet
Set.instHasSubset
preimageβ€”β€”
preimage_subset_preimage_left πŸ“–mathematicalSetRel
Set.instHasSubset
Set
preimage
β€”β€”
preimage_union πŸ“–mathematicalβ€”preimage
Set
Set.instUnion
β€”Set.ext
preimage_univ_left πŸ“–mathematicalSet.Nonemptypreimage
Set.univ
β€”Set.ext
preimage_univ_right πŸ“–mathematicalβ€”preimage
Set.univ
dom
β€”Set.ext
prodMk_mem_comp πŸ“–mathematicalSetRel
Set.instMembership
compβ€”β€”
prod_comp_prod πŸ“–mathematicalβ€”comp
SProd.sprod
Set
Set.instSProd
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.instEmptyCollection
β€”prod_comp_prod_of_disjoint
prod_comp_prod_of_inter_nonempty
Set.not_disjoint_iff_nonempty_inter
prod_comp_prod_of_disjoint πŸ“–mathematicalDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
comp
SProd.sprod
Set.instSProd
SetRel
Set.instEmptyCollection
β€”Set.eq_empty_of_forall_notMem
Set.disjoint_left
prod_comp_prod_of_inter_nonempty πŸ“–mathematicalSet.Nonempty
Set
Set.instInter
comp
SProd.sprod
Set.instSProd
β€”Set.ext
prod_subset_comm πŸ“–mathematicalβ€”Set
Set.instHasSubset
SProd.sprod
Set.instSProd
β€”inv_eq_self
inv.eq_1
Set.image_subset_iff
Set.image_swap_prod
refl πŸ“–mathematicalβ€”SetRel
Set.instMembership
β€”refl_of
rfl πŸ“–mathematicalβ€”SetRel
Set.instMembership
β€”refl
right_subset_comp πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
comp
β€”id_comp
comp_subset_comp_left
id_subset
sUnion_comp πŸ“–mathematicalβ€”comp
Set.sUnion
Set.iUnion
SetRel
Set
Set.instMembership
β€”Set.ext
self_subset_image πŸ“–mathematicalβ€”Set
Set.instHasSubset
image
β€”rfl
self_subset_preimage πŸ“–mathematicalβ€”Set
Set.instHasSubset
preimage
β€”rfl
subset_iterate_comp πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
Nat.iterate
comp
β€”Set.Subset.rfl
HasSubset.Subset.trans
Set.instIsTransSubset
right_subset_comp
subset_symmetrize πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
symmetrize
inv
β€”Set.subset_inter_iff
symmetrize_mono πŸ“–mathematicalSetRel
Set.instHasSubset
symmetrizeβ€”Set.inter_subset_inter
Set.preimage_mono
symmetrize_subset_inv πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
symmetrize
inv
β€”Set.inter_subset_right
symmetrize_subset_self πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
symmetrize
β€”Set.inter_subset_left
trans πŸ“–β€”SetRel
Set.instMembership
β€”β€”trans_of
univ_comp πŸ“–mathematicalβ€”comp
Set.univ
setOf
Set
Set.instMembership
cod
β€”Set.ext

SetRel.IsRefl

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”SetRel.IsRefl
SetRel.comp
β€”SetRel.rfl
sInter πŸ“–mathematicalSetRel.IsReflSet.sInterβ€”β€”

SetRel.IsSymm

Theorems

NameKindAssumesProvesValidatesDepends On
sInter πŸ“–mathematicalSetRel.IsSymmSet.sInterβ€”β€”

SetRel.IsTrans

Theorems

NameKindAssumesProvesValidatesDepends On
sInter πŸ“–mathematicalSetRel.IsTransSet.sInterβ€”IsTrans.trans

SimpleGraph.TripartiteFromTriangles

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
3 mathmath: rel_iff, rel_irrefl, rel_symm

Sym2

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
7 mathmath: eq, out_fst_mem, Rel.is_equivalence, rel_iff', rel_iff, exact, out_snd_mem

SymmetricPower

Definitions

NameCategoryTheorems
Rel πŸ“–CompDataβ€”

TensorAlgebra

Definitions

NameCategoryTheorems
Rel πŸ“–CompData
2 mathmath: ΞΉ_def, ringQuot_mkAlgHom_freeAlgebra_ΞΉ_eq_ΞΉ

TopCat.GlueData

Definitions

NameCategoryTheorems
Rel πŸ“–MathDef
2 mathmath: rel_equiv, ΞΉ_eq_iff_rel

UniversalEnvelopingAlgebra

Definitions

NameCategoryTheorems
Rel πŸ“–CompDataβ€”

ValuativeRel

Definitions

NameCategoryTheorems
Rel πŸ“–MathDefβ€”

(root)

Definitions

NameCategoryTheorems
Rel πŸ“–CompOpβ€”
SetRel πŸ“–CompOp
120 mathmath: Fintype.all_card_le_rel_image_card_iff_exists_injective, UniformSpace.mem_uniformity_ofCore_iff, isTransitiveRel_singleton, Dynamics.coverEntropyInfEntourage_antitone, SetRel.mem_comp, monotone_hausdorffEntourage, IsTransitiveRel.inter, uniformity_hasBasis_closed, Filter.HasBasis.mem_uniformity_iff, entourageProd_subset, RelSeries.rel_or_eq_of_le, Filter.HasBasis.cauchySeq_iff, SetRel.image_empty_left, UniformSpace.ball_eq_of_symmetry, SetRel.sUnion_comp, SetRel.mem_image, UniformSpace.mem_comp_of_mem_ball, Dynamics.netEntropyEntourage_antitone, SetRel.preimage_eq_biUnion, CauchyFilter.mem_uniformity, Function.graph_injective, SetRel.left_subset_comp, right_subset_compRel, idRel_subset, uniformity_hasBasis_closure, SetRel.prod_comp_prod_of_disjoint, SetRel.right_subset_comp, SetRel.comp_empty, Filter.HasBasis.cauchySeq_iff', SetRel.comp_sUnion, SetRel.mem_inv, Filter.HasBasis.uniformity_hausdorff, discreteUniformity_iff_setRelId_mem_uniformity, Dynamics.coverMincard_antitone, Dynamics.netMaxcard_antitone, EMetric.mem_hausdorffEntourage_of_hausdorffEdist_lt, CategoryTheory.RelCat.Hom.rel_id_applyβ‚‚, subset_comp_self, isTransitiveRel_iff_comp_subset_self, discreteUniformity_iff_relId_mem_uniformity, nhds_nhds_eq_uniformity_uniformity_prod, subset_iterate_compRel, SetRel.mem_preimage, CauchyFilter.basis_uniformity, Dynamics.mem_dynEntourage, SetRel.irrefl, DiscreteUniformity.relId_mem_uniformity, CauchyFilter.monotone_gen, Dynamics.dynEntourage_comp_subset, UniformSpace.hasBasis_nhds, SetRel.rfl, uniformity_hasBasis_open_symmetric, mem_hausdorffEntourage, SetRel.symmetrize_subset_inv, UniformSpace.uniformSpace_eq_bot, Dynamics.coverEntropyEntourage_antitone, Filter.HasBasis.totallyBounded_iff, SetRel.comp_subset_self, SetRel.mem_cod, left_subset_compRel, SetRel.isRefl_inter, discreteUniformity_iff_idRel_mem_uniformity, SetRel.mem_id, mem_entourageProd, SetRel.isSymm_inter, UniformSpace.mem_comp_comp, symmetrizeRel_subset_self, CategoryTheory.RelCat.Hom.rel_comp_applyβ‚‚, SetRel.isSeparated_insert_of_notMem, SetRel.id_subset_iff, SetRel.id_subset, Filter.HasBasis.cauchy_iff, DiscreteUniformity.idRel_mem_uniformity, SetRel.symmetrize_subset_self, SetRel.image_eq_biUnion, RelSeries.toList_chain', IsSymmetricRel.mk_mem_comm, mem_compRel, RelSeries.last_map, SetRel.comm, Metric.mem_hausdorffEntourage_of_hausdorffEDist_lt, SetRel.dom_eq_empty_iff, RelSeries.eraseLast_last_rel_last, Function.mem_graph, RelSeries.rel_of_lt, RelSeries.head_map, SetRel.isTrans_inter, SetRel.isTrans_empty, singleton_mem_hausdorffEntourage, RelSeries.map_apply, nhds_eq_uniformity_prod, SetRel.refl, SetRel.isSymm_empty, RelSeries.step, Dynamics.netEntropyInfEntourage_antitone, Dynamics.dynEntourage_antitone, SetRel.mem_filter_prod_comm, SetRel.inv_empty, SetRel.exists_graph_eq_iff, SetRel.empty_comp, IsUltraUniformity.hasBasis, SetRel.subset_symmetrize, SetRel.dom_empty, isTransitiveRel_empty, UniformSpace.hasBasis_symmetric, lift_nhds_right, nhds_basis_uniformity, SetRel.cod_eq_empty_iff, SetRel.isTrans_singleton, SetRel.mem_dom, uniformity_hasBasis_open, RelSeries.isChain_toList, SetRel.cod_empty, IsSymmetricRel.inter, IsTransitiveRel.comp_subset_self, Filter.HasBasis.uniformSpace_eq_bot, SetRel.subset_iterate_comp, Dynamics.dynEntourage_monotone, SetRel.isTrans_iff_comp_subset_self, SetRel.preimage_empty_left

---

← Back to Index