| Metric | Count |
DefinitionsRel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, Rel, graph, tupleGraph, Rel, Rel, Rel, Rel, Rel, SetRel, IsIrrefl, IsRefl, IsSymm, IsTrans, IsWellFounded, cod, comp, core, dom, id, image, inv, preimage, restrictDomain, symmetrize, Β«term_~[_]_Β», Β«term_β_Β», Rel, Rel, Rel, Rel, Rel, Rel, Rel | 43 |
Theoremsgraph_inv, graph_comp, graph_id, graph_inj, graph_injective, mem_graph, relComp, image_eq, preimage_eq, preimage_eq_core, comp, sInter, sInter, sInter, cod_empty, cod_eq_empty_iff, cod_inv, cod_mono, cod_univ, comm, comp_assoc, comp_empty, comp_eq_self, comp_iUnion, comp_id, comp_sUnion, comp_subset_comp, comp_subset_comp_left, comp_subset_comp_right, comp_subset_self, comp_univ, core_comp, core_id, core_inter, core_mono, core_subset_core, core_union_subset, core_univ, dom_empty, dom_eq_empty_iff, dom_inv, dom_mono, dom_univ, empty_comp, exists_eq_singleton_of_prod_subset_id, exists_graph_eq_iff, iUnion_comp, id_comp, id_subset, id_subset_iff, image_comp, image_core_gc, image_empty_left, image_empty_right, image_eq_biUnion, image_eq_cod_of_dom_subset, image_iUnion, image_id, image_inter_dom, image_inter_subset, image_inv, image_mono, image_sUnion, image_subset_iff, image_subset_image, image_subset_image_left, image_union, image_univ_left, image_univ_right, instIsIrreflSetOfProdMatch_1PropOfIrrefl, instIsSymmInv, instIsTransSetOfProdMatch_1PropOfIsTrans, inter_cod_subset_image_preimage, inter_dom_subset_preimage_image, inv_comp, inv_empty, inv_eq_self, inv_eq_self_iff, inv_id, inv_inv, inv_mono, inv_univ, irrefl, isRefl_iInter, isRefl_inter, isRefl_mono, isRefl_preimage, isRefl_univ, isSymm_comp_inv, isSymm_comp_self, isSymm_empty, isSymm_iInter, isSymm_id, isSymm_image, isSymm_inter, isSymm_inv_comp, isSymm_preimage, isSymm_symmetrize, isSymm_univ, isTrans_empty, isTrans_iInter, isTrans_id, isTrans_iff_comp_subset_self, isTrans_inter, isTrans_preimage, isTrans_singleton, isTrans_symmetrize, isTrans_univ, left_subset_comp, mem_cod, mem_comp, mem_core, mem_dom, mem_id, mem_image, mem_inv, mem_preimage, preimage_comp, preimage_empty_left, preimage_empty_right, preimage_eq_biUnion, preimage_eq_dom_of_cod_subset, preimage_eq_image, preimage_iUnion, preimage_id, preimage_inter_cod, preimage_inter_subset, preimage_inv, preimage_mono, preimage_sUnion, preimage_subset_preimage, preimage_subset_preimage_left, preimage_union, preimage_univ_left, preimage_univ_right, prodMk_mem_comp, prod_comp_prod, prod_comp_prod_of_disjoint, prod_comp_prod_of_inter_nonempty, prod_subset_comm, refl, rfl, right_subset_comp, sUnion_comp, self_subset_image, self_subset_preimage, subset_iterate_comp, subset_symmetrize, symmetrize_mono, symmetrize_subset_inv, symmetrize_subset_self, trans, univ_comp | 153 |
| Total | 196 |
| Name | Category | Theorems |
IsIrrefl π | MathDef | 1 mathmath: instIsIrreflSetOfProdMatch_1PropOfIrrefl
|
IsRefl π | MathDef | 9 mathmath: IsRefl.comp, isRefl_of_mem_uniformity, isRefl_preimage, isRefl_univ, isRefl_inter, id_subset_iff, Dynamics.isRefl_dynEntourage, isRefl_hausdorffEntourage, isRefl_mono
|
IsSymm π | MathDef | 34 mathmath: IsUltraUniformity.mem_nhds_iff_symm_trans, Dynamics.isSymm_dynEntourage, IsSymmetricRel.cauchyFilter_gen, comp_open_symm_mem_uniformity_sets, PseudoMetric.isSymm_closedBall, isSymm_id, closure_eq_uniformity, isSymm_inv_comp, PseudoMetric.isSymm_ball, CauchyFilter.isSymm_gen, isSymm_comp_inv, comp_symm_mem_uniformity_sets, UniformSpace.mem_nhds_iff_symm, isSymm_comp_self, UniformSpace.hasBasis_nhds, isSymm_symmetrize, uniformity_hasBasis_open_symmetric, isSymm_univ, isSymm_inter, isSymm_hausdorffEntourage, IsSymm_entourageProd, comp_comp_symm_mem_uniformity_sets, isSymm_preimage, PseudoMetric.isSymmetricRel_closedBall, PseudoMetric.isSymmetricRel_ball, isSymm_empty, UniformSpace.has_seq_basis, symm_of_uniformity, inv_eq_self_iff, IsUltraUniformity.hasBasis, instIsSymmInv, UniformSpace.hasBasis_symmetric, UniformSpace.hasBasis_nhds_prod, isSymm_image
|
IsTrans π | MathDef | 20 mathmath: isTrans_preimage, CauchyFilter.isTrans_gen, IsUltraUniformity.mem_nhds_iff_symm_trans, isTrans_hausdorffEntourage, PseudoMetric.IsUltra.isTransitiveRel_closedBall, PseudoMetric.IsUltra.isTrans_closedBall, isTrans_entourageProd, PseudoMetric.IsUltra.isTransitiveRel_ball, isTrans_id, instIsTransSetOfProdMatch_1PropOfIsTrans, IsTransitiveRel.cauchyFilter_gen, PseudoMetric.IsUltra.isTrans_ball, IsTransitiveRel.entourageProd, isTrans_inter, isTrans_symmetrize, isTrans_empty, IsUltraUniformity.hasBasis, isTrans_singleton, isTrans_univ, isTrans_iff_comp_subset_self
|
IsWellFounded π | MathDef | 2 mathmath: IsWellFounded.inv_of_finiteDimensional, IsWellFounded.of_finiteDimensional
|
cod π | CompOp | 11 mathmath: cod_inv, cod_mono, preimage_inter_cod, mem_cod, inter_cod_subset_image_preimage, image_univ_right, dom_inv, cod_univ, cod_eq_empty_iff, cod_empty, univ_comp
|
comp π | CompOp | 99 mathmath: Dynamics.coverEntropyInfEntourage_le_netEntropyInfEntourage, Dynamics.coverEntropyEntourage_le_coverEntropyInfEntourage, comp_subset_comp, comp3_mem_uniformity, comp_iUnion, comp_le_uniformity3, mem_comp, comp_subset_comp_right, compRel_mono, Filter.rcomap_compose, comp_symm_of_uniformity, UniformSpace.mem_ball_comp, prod_comp_prod_of_inter_nonempty, UniformSpace.Core.comp_mem_uniformity_sets, UniformSpace.comp, prodMk_mem_compRel, IsRefl.comp, Dynamics.IsDynCoverOf.iterate_le_pow, uniformity_lift_le_comp, prod_comp_prod, inv_comp, Filter.rcomap'_compose, sUnion_comp, compRel_right_mono, UniformSpace.mem_comp_of_mem_ball, comp_subset_comp_left, Dynamics.IsDynCoverOf.preimage, compRel_left_mono, Dynamics.coverMincard_closure_le, Filter.rcomap'_rcomap', Dynamics.coverEntropyEntourage_le_netEntropyEntourage, comp_open_symm_mem_uniformity_sets, id_comp, left_subset_comp, right_subset_compRel, closure_eq_uniformity, prod_comp_prod_of_disjoint, right_subset_comp, isSymm_inv_comp, comp_empty, comp_eq_self, comp_sUnion, Monotone.relComp, Dynamics.le_coverEntropyEntourage_image, lift'_comp_uniformity, subset_comp_self, core_comp, isSymm_comp_inv, comp_symm_mem_uniformity_sets, isTransitiveRel_iff_comp_subset_self, hausdorffEntourage_comp, isSymm_comp_self, compRel_assoc, preimage_comp, subset_iterate_compRel, Dynamics.IsDynCoverOf.coverEntropyEntourage_le_log_card_div, subset_comp_self_of_mem_uniformity, Dynamics.dynEntourage_comp_subset, comp_mem_uniformity_sets, Dynamics.IsDynCoverOf.closure, Dynamics.coverEntropyEntourage_le_log_coverMincard_div, Dynamics.coverMincard_le_pow, Dynamics.coverMincard_mul_le_pow, id_compRel, comp_subset_self, left_subset_compRel, eventually_uniformity_iterate_comp_subset, comp_le_uniformity, UniformSpace.mem_comp_comp, IsTransitiveRel.comp_eq_of_idRel_subset, Dynamics.coverMincard_le_netMaxcard, Dynamics.coverEntropyInfEntourage_closure, Filter.rmap_compose, Dynamics.coverEntropyEntourage_closure, Filter.rcomap_rcomap, comp_comp_symm_mem_uniformity_sets, mem_compRel, closure_eq_inter_uniformity, IsOpen.relComp, Monotone.compRel, Dynamics.mem_ball_dynEntourage_comp, prodMk_mem_comp, Dynamics.le_coverEntropyInfEntourage_image, empty_comp, CategoryTheory.RelCat.Hom.rel_comp, image_comp, iUnion_comp, comp_assoc, Dynamics.le_coverMincard_image, comp_univ, IsTransitiveRel.comp_subset_self, Filter.rmap_rmap, Function.graph_comp, UniformSpace.Core.comp, eventually_uniformity_comp_subset, subset_iterate_comp, comp_id, isTrans_iff_comp_subset_self, univ_comp
|
core π | CompOp | 16 mathmath: image_subset_iff, core_union_subset, Filter.rtendsto_def, core_mono, core_id, Filter.rcomap_sets, image_core_gc, core_subset_core, mem_core, core_inter, core_comp, Set.preimage_eq_core, Filter.mem_rmap, core_univ, Filter.rmap_sets, rtendsto_nhds
|
dom π | CompOp | 13 mathmath: preimage_univ_right, preimage_eq_dom_of_cod_subset, cod_inv, image_eq_cod_of_dom_subset, dom_mono, inter_dom_subset_preimage_image, dom_eq_empty_iff, dom_univ, dom_inv, image_inter_dom, dom_empty, mem_dom, comp_univ
|
id π | CompOp | 32 mathmath: discreteUniformity_iff_eq_principal_relId, bot_uniformity, core_id, isCover_relId, id_comp, isSymm_id, discreteUniformity_iff_setRelId_mem_uniformity, discreteUniformity_iff_relId_mem_uniformity, discreteUniformity_iff_eq_principal_setRelId, isCover_id, DiscreteUniformity.relId_mem_uniformity, isTrans_id, DiscreteUniformity.eq_principal_setRelId, UniformSpace.uniformSpace_eq_bot, DiscreteUniformity.eq_principal_relId, discreteUniformity_iff_idRel_mem_uniformity, mem_id, Function.graph_id, discreteUniformity_iff_eq_principal_idRel, id_subset_iff, id_subset, hausdorffEntourage_id, DiscreteUniformity.idRel_mem_uniformity, image_id, refl_le_uniformity, inv_id, DiscreteUniformity.eq_principal_idRel, preimage_id, comap_uniformity_of_spaced_out, CategoryTheory.RelCat.Hom.rel_id, comp_id, UniformSpace.Core.refl
|
image π | CompOp | 34 mathmath: Fintype.all_card_le_rel_image_card_iff_exists_injective, UniformSpace.closure_subset_image, IsClosed.relImage_of_isCompact, image_subset_iff, Set.image_eq, image_sUnion, image_empty_left, Filter.rcomap_sets, mem_image, image_core_gc, image_empty_right, image_subset_image_left, image_inter_subset, image_union, image_subset_image, self_subset_image, image_mono, mem_hausdorffEntourage, preimage_eq_image, Filter.rcomap'_sets, image_eq_biUnion, image_id, IsOpen.relImage, inter_dom_subset_preimage_image, inter_cod_subset_image_preimage, image_univ_right, image_inv, image_iUnion, image_univ_left, image_inter_dom, image_comp, preimage_inv, IsClosed.relImage_of_finite, image_entourageProd_prod
|
inv π | CompOp | 33 mathmath: IsWellFounded.inv_of_finiteDimensional, IsOpen.relInv, IsClosed.relInv, inv_comp, finiteDimensional_inv, InfiniteDimensional.inv, isSymm_inv_comp, mem_inv, RelSeries.head_reverse, RelSeries.reverse_reverse, Equiv.graph_inv, isSymm_comp_inv, cod_inv, inv_hausdorffEntourage, inv_univ, symmetrize_subset_inv, RelSeries.last_reverse, RelSeries.reverse_length, RelSeries.reverse_apply, inv_eq_self, inv_entourageProd, inv_inv, inv_id, inv_eq_self_iff, dom_inv, infiniteDimensional_inv, image_inv, inv_empty, subset_symmetrize, inv_mono, instIsSymmInv, FiniteDimensional.inv, preimage_inv
|
preimage π | CompOp | 37 mathmath: preimage_univ_right, preimage_union, preimage_eq_dom_of_cod_subset, self_subset_preimage, Set.preimage_eq, rtendsto'_nhds, IsClosed.relPreimage_of_isCompact, preimage_eq_biUnion, Filter.rtendsto'_def, preimage_inter_subset, Filter.TotallyBounded.exists_subset_of_mem, preimage_comp, mem_preimage, Filter.HasBasis.filter_totallyBounded_iff, IsOpen.relPreimage, preimage_inter_cod, image_eq_cod_of_dom_subset, mem_hausdorffEntourage, preimage_mono, preimage_eq_image, preimage_univ_left, preimage_iUnion, Filter.rcomap'_sets, preimage_entourageProd_prod, inter_dom_subset_preimage_image, preimage_empty_right, IsClosed.relPreimage_of_finite, preimage_sUnion, preimage_subset_preimage, inter_cod_subset_image_preimage, Filter.mem_rcomap', UniformSpace.closure_subset_preimage, image_inv, preimage_subset_preimage_left, preimage_id, preimage_inv, preimage_empty_left
|
restrictDomain π | CompOp | β |
symmetrize π | CompOp | 8 mathmath: IsTransitiveRel.symmetrizeRel, symmetrize_mem_uniformity, isSymm_symmetrize, symmetrize_subset_inv, symmetrize_mono, symmetrize_subset_self, isTrans_symmetrize, subset_symmetrize
|
Β«term_~[_]_Β» π | CompOp | β |
Β«term_β_Β» π | CompOp | β |