Documentation Verification Report

Accumulate

πŸ“ Source: Mathlib/Data/Set/Accumulate.lean

Statistics

MetricCount
DefinitionsAccumulate, accumulate
2
Theoremsaccumulate_bot, accumulate_def, accumulate_subset_accumulate, accumulate_subset_iUnion, accumulate_succ, accumulate_zero_nat, biUnion_accumulate, disjoint_accumulate, iUnion_accumulate, mem_accumulate, monotone_accumulate, partialSups_eq_accumulate, subset_accumulate
13
Total15

Set

Definitions

NameCategoryTheorems
Accumulate πŸ“–CompOpβ€”
accumulate πŸ“–CompOp
21 mathmath: accumulate_bot, accumulate_succ, MeasureTheory.FiniteMeasure.tendsto_measure_iUnion_accumulate, disjoint_accumulate, accumulate_subset_accumulate, monotone_accumulate, MeasureTheory.ProbabilityMeasure.tendsto_measure_iUnion_accumulate, iUnion_accumulate, accumulate_def, mem_accumulate, partialSups_eq_accumulate, accumulate_zero_nat, biUnion_accumulate, MeasureTheory.addContent_accumulate, accumulate_subset_iUnion, MeasureTheory.IsSetRing.accumulate_mem, MeasureTheory.tendsto_measure_iUnion_accumulate, subset_accumulate, MeasureTheory.measure_iUnion_eq_iSup_accumulate, isCompact_accumulate, isLindelof_accumulate

Theorems

NameKindAssumesProvesValidatesDepends On
accumulate_bot πŸ“–mathematicalβ€”accumulate
Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”iUnion_congr_Prop
iUnion_iUnion_eq_left
accumulate_def πŸ“–mathematicalβ€”accumulate
iUnion
β€”β€”
accumulate_subset_accumulate πŸ“–mathematicalPreorder.toLESet
instHasSubset
accumulate
β€”monotone_accumulate
accumulate_subset_iUnion πŸ“–mathematicalβ€”Set
instHasSubset
accumulate
iUnion
β€”LE.le.trans_eq
biUnion_subset_biUnion_left
subset_univ
biUnion_univ
accumulate_succ πŸ“–mathematicalβ€”accumulate
Set
instUnion
β€”biUnion_le_succ
accumulate_zero_nat πŸ“–mathematicalβ€”accumulateβ€”iUnion_congr_Prop
iUnion_iUnion_eq_left
biUnion_accumulate πŸ“–mathematicalβ€”iUnion
Preorder.toLE
accumulate
β€”Subset.antisymm
iUnionβ‚‚_subset
monotone_accumulate
iUnionβ‚‚_mono
subset_accumulate
disjoint_accumulate πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Preorder.toLT
accumulate
Preorder.toLE
β€”disjoint_left
LT.lt.ne
LE.le.trans_lt
iUnion_accumulate πŸ“–mathematicalβ€”iUnion
accumulate
Preorder.toLE
β€”Subset.antisymm
iUnion_mono
subset_accumulate
mem_accumulate πŸ“–mathematicalβ€”Set
instMembership
accumulate
β€”β€”
monotone_accumulate πŸ“–mathematicalβ€”Monotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
accumulate
Preorder.toLE
β€”biUnion_subset_biUnion_left
le_trans
partialSups_eq_accumulate πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Set
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
OrderHom.instFunLike
partialSups
LocallyFiniteOrder.toLocallyFiniteOrderBot
Nat.instOrderBot
Nat.instLocallyFiniteOrder
accumulate
β€”ext
partialSups_eq_sup_range
Finset.sup_set_eq_biUnion
iUnion_congr_Prop
subset_accumulate πŸ“–mathematicalβ€”Set
instHasSubset
accumulate
Preorder.toLE
β€”mem_biUnion
le_rfl

---

← Back to Index