Documentation

Mathlib.Data.Set.Accumulate

Accumulate #

The function accumulate takes s : α → Set β with LE α and returns ⋃ y ≤ x, s y. It is related to dissipate s := ⋂ y ≤ x, s y.

accumulate is closely related to the function partialSups, although these two functions have slightly different typeclass assumptions and API. partialSups_eq_accumulate shows that they coincide on .

def Set.accumulate {α : Type u_1} {β : Type u_2} [LE α] (s : αSet β) (x : α) :
Set β

accumulate s is the union of s y for y ≤ x.

Equations
    Instances For
      @[deprecated Set.accumulate (since := "2025-12-14")]
      def Set.Accumulate {α : Type u_1} {β : Type u_2} [LE α] (s : αSet β) (x : α) :
      Set β

      Alias of Set.accumulate.


      accumulate s is the union of s y for y ≤ x.

      Equations
        Instances For
          theorem Set.accumulate_def {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] {x : α} :
          accumulate s x = ⋃ (y : α), ⋃ (_ : y x), s y
          @[simp]
          theorem Set.mem_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] {x : α} {z : β} :
          z accumulate s x yx, z s y
          theorem Set.subset_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] {x : α} :
          s x accumulate s x
          theorem Set.accumulate_subset_iUnion {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] (x : α) :
          accumulate s x ⋃ (i : α), s i
          theorem Set.monotone_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] :
          theorem Set.accumulate_subset_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] {x y : α} (h : x y) :
          @[simp]
          theorem Set.biUnion_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] (x : α) :
          ⋃ (y : α), ⋃ (_ : y x), accumulate s y = ⋃ (y : α), ⋃ (_ : y x), s y
          @[simp]
          theorem Set.iUnion_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] :
          ⋃ (x : α), accumulate s x = ⋃ (x : α), s x
          @[simp]
          theorem Set.accumulate_bot {α : Type u_1} {β : Type u_2} [PartialOrder α] [OrderBot α] (s : αSet β) :
          @[simp]
          theorem Set.accumulate_zero_nat {β : Type u_2} (s : Set β) :
          accumulate s 0 = s 0
          theorem Set.disjoint_accumulate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] (hs : Pairwise (Function.onFun Disjoint s)) {i j : α} (hij : i < j) :
          Disjoint (accumulate s i) (s j)
          theorem Set.accumulate_succ {α : Type u_1} (u : Set α) (n : ) :
          accumulate u (n + 1) = accumulate u n u (n + 1)