Documentation Verification Report

PowersetCard

πŸ“ Source: Mathlib/Data/Set/PowersetCard.lean

Statistics

MetricCount
DefinitionspowersetCard, compl, instFintypeElemFinset, instPartialOrderElemFinset, instSetLikeElemFinset, map, ofFinEmb, ofSingleton
8
Theoremscard, card_eq, coe_coe, coe_compl, coe_finset, coe_map, coe_nonempty_iff, coe_nontrivial_iff, coe_ofFinEmb, compl_symm, eq_empty_iff, eq_iff_subset, exist_mem_powersetCard_of_inf, exists_mem_notMem, exists_mem_notMem_iff_ne, instFiniteElemFinset, instInfinite, mem_coe_iff, mem_compl, mem_iff, mem_map_iff_mem_range, mem_ofFinEmb_iff_mem_range, ncard_eq, nontrivial, nontrivial', nontrivial_iff, ofFinEmb_surjective, val_map, val_ofFinEmb
29
Total37

Set

Definitions

NameCategoryTheorems
powersetCard πŸ“–CompOp
72 mathmath: powersetCard.exist_mem_powersetCard_of_inf, exteriorPower.basis_apply, powersetCard.val_ofFinEmb, exteriorPower.coe_basis, exteriorPower.ΞΉMulti_family_linearIndependent_field, powersetCard.isPretransitive, exteriorPower.basis_repr_ne, powersetCard.ofFinEmb_surjective, exteriorPower.ΞΉMulti_family_span_fixedDegree_of_span, powersetCard.mem_mulActionHom_compl, powersetCard.coe_coe, powersetCard.faithfulSMul, powersetCard.compl_symm, powersetCard.stabilizer_coe, powersetCard.instInfinite, powersetCard.nontrivial_iff, powersetCard.isPretransitive_alternatingGroup, powersetCard.isPretransitive_of_isMultiplyPretransitive', powersetCard.addAction_stabilizer_coe, powersetCard.addActionHom_of_embedding_surjective, powersetCard.exists_mem_notMem, powersetCard.eq_empty_iff, powersetCard.mem_coe_iff, powersetCard.coe_ofFinEmb, powersetCard.coe_map, powersetCard.mem_ofFinEmb_iff_mem_range, powersetCard.card_eq, powersetCard.ofFinEmbEquiv_symm_apply, powersetCard.mem_compl, exteriorPower.ΞΉMultiDual_apply_ΞΉMulti, exteriorPower.ΞΉMulti_family_eq_coe_comp, powersetCard.mulActionHom_compl_mulActionHom_compl, powersetCard.coe_finset, powersetCard.coe_nonempty_iff, powersetCard.faithfulVAdd, powersetCard.mulActionHom_compl_bijective, powersetCard.addActionHom_singleton_bijective, powersetCard.coe_compl, powersetCard.mem_iff, exteriorPower.ΞΉMulti_family_span_of_span, powersetCard.coe_addActionHom_of_embedding, exteriorPower.basis_coord, powersetCard.addAction_faithful, powersetCard.mem_ofFinEmbEquiv_iff_mem_range, powersetCard.nontrivial', powersetCard.nontrivial, exteriorPower.basis_repr_apply, powersetCard.isPreprimitive_perm, powersetCard.isPretransitive_of_isMultiplyPretransitive, exteriorPower.map_comp_ΞΉMulti_family, powersetCard.isPreprimitive_alternatingGroup, powersetCard.card, powersetCard.mulActionHom_singleton_bijective, powersetCard.mulAction_faithful, exteriorPower.basis_repr, powersetCard.coe_mulActionHom_compl, powersetCard.instFiniteElemFinset, exteriorPower.ΞΉMulti_family_linearIndependent_ofBasis, powersetCard.val_map, powersetCard.mem_range_ofFinEmbEquiv_symm_iff_mem, exteriorPower.ΞΉMulti_family_span, powersetCard.ncard_eq, powersetCard.mem_map_iff_mem_range, powersetCard.coe_mulActionHom_of_embedding, powersetCard.mulActionHom_of_embedding_surjective, powersetCard.coe_smul, powersetCard.coe_nontrivial_iff, powersetCard.exists_mem_notMem_iff_ne, exteriorPower.basis_repr_self, powersetCard.coe_vadd, powersetCard.ofFinEmbEquiv_apply, powersetCard.eq_iff_subset

Set.powersetCard

Definitions

NameCategoryTheorems
compl πŸ“–CompOp
3 mathmath: compl_symm, mem_compl, coe_compl
instFintypeElemFinset πŸ“–CompOpβ€”
instPartialOrderElemFinset πŸ“–CompOpβ€”
instSetLikeElemFinset πŸ“–CompOp
17 mathmath: mem_mulActionHom_compl, coe_coe, stabilizer_coe, addAction_stabilizer_coe, exists_mem_notMem, mem_coe_iff, coe_ofFinEmb, coe_map, mem_ofFinEmb_iff_mem_range, mem_compl, coe_nonempty_iff, mem_ofFinEmbEquiv_iff_mem_range, mem_range_ofFinEmbEquiv_symm_iff_mem, ncard_eq, mem_map_iff_mem_range, coe_nontrivial_iff, exists_mem_notMem_iff_ne
map πŸ“–CompOp
3 mathmath: coe_map, val_map, mem_map_iff_mem_range
ofFinEmb πŸ“–CompOp
5 mathmath: val_ofFinEmb, ofFinEmb_surjective, coe_ofFinEmb, mem_ofFinEmb_iff_mem_range, ofFinEmbEquiv_apply
ofSingleton πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Nat.card
Set.Elem
Finset
Set.powersetCard
Nat.choose
β€”coe_finset
Nat.card_eq_fintype_card
Fintype.card_finset_len
Fintype.card_unique
Nat.card_eq_zero_of_infinite
Nat.choose_self
Nat.choose_zero_succ
instInfinite
card_eq πŸ“–mathematicalβ€”Finset.card
Finset
Set
Set.instMembership
Set.powersetCard
β€”Subtype.prop
coe_coe πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
Set
Set.instMembership
Set.powersetCard
Set.Elem
instSetLikeElemFinset
β€”β€”
coe_compl πŸ“–mathematicalFintype.cardFinset
Set
Set.instMembership
Set.powersetCard
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
compl
Compl.compl
BooleanAlgebra.toCompl
Finset.booleanAlgebra
β€”β€”
coe_finset πŸ“–mathematicalβ€”Set.powersetCard
SetLike.coe
Finset
Finset.instSetLike
Finset.powersetCard
Finset.univ
β€”Set.ext
coe_map πŸ“–mathematicalβ€”SetLike.coe
Set.Elem
Finset
Set.powersetCard
instSetLikeElemFinset
map
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”Set.ext
coe_nonempty_iff πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
Set.Elem
Finset
Set.powersetCard
instSetLikeElemFinset
β€”coe_coe
Finset.coe_nonempty
Finset.one_le_card
Subtype.prop
coe_nontrivial_iff πŸ“–mathematicalβ€”Set.Nontrivial
SetLike.coe
Set.Elem
Finset
Set.powersetCard
instSetLikeElemFinset
β€”coe_coe
Finset.nontrivial_coe
Finset.one_lt_card_iff_nontrivial
card_eq
coe_ofFinEmb πŸ“–mathematicalβ€”SetLike.coe
Set.Elem
Finset
Set.powersetCard
instSetLikeElemFinset
ofFinEmb
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”Set.ext
compl_symm πŸ“–mathematicalFintype.cardEquiv.symm
Set.Elem
Finset
Set.powersetCard
compl
β€”β€”
eq_empty_iff πŸ“–mathematicalβ€”Set.powersetCard
Set
Finset
Set.instEmptyCollection
Nat.card
β€”Set.ncard_eq_zero
Set.toFinite
instFiniteElemFinset
Nat.card_coe_set_eq
card
Nat.choose_eq_zero_iff
eq_iff_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Set
Set.instMembership
Set.powersetCard
β€”Finset.subset_iff_eq_of_card_le
Eq.trans_le
Subtype.prop
Eq.ge
exist_mem_powersetCard_of_inf πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
Finset.instMembership
β€”Infinite.exists_superset_card_eq
Finset.card_singleton
mem_iff
exists_mem_notMem πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
Set.Elem
Finset
Set.powersetCard
SetLike.instMembership
instSetLikeElemFinset
β€”ENat.lt_add_one_iff'
ENat.coe_ne_top
add_comm
Set.encard_singleton
Set.encard_add_encard_compl
Set.encard_univ
Set.exists_superset_subset_encard_eq
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Set.finite_of_encard_eq_coe
mem_iff
Set.Finite.encard_eq_coe_toFinset_card
exists_mem_notMem_iff_ne πŸ“–mathematicalβ€”Set.Elem
Finset
Set.powersetCard
SetLike.instMembership
instSetLikeElemFinset
β€”Mathlib.Tactic.Contrapose.contrapose_iffβ‚‚
Mathlib.Tactic.Push.not_and_eq
eq_iff_subset
instFiniteElemFinset πŸ“–mathematicalβ€”Finite
Set.Elem
Finset
Set.powersetCard
β€”coe_finset
Subtype.finite
Finite.of_fintype
instInfinite πŸ“–mathematicalβ€”Infinite
Set.Elem
Finset
Set.powersetCard
β€”not_finite_iff_infinite
Set.sUnion_eq_univ_iff
exist_mem_powersetCard_of_inf
Set.mem_image_of_mem
Finset.mem_coe
Finite.false
Set.finite_univ_iff
Set.Finite.sUnion
Set.Finite.image
Set.sUnion_image
Set.iUnion_congr_Prop
mem_coe_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
Set
Set.instMembership
Set.powersetCard
Set.Elem
SetLike.instMembership
instSetLikeElemFinset
β€”β€”
mem_compl πŸ“–mathematicalFintype.cardSet.Elem
Finset
Set.powersetCard
SetLike.instMembership
instSetLikeElemFinset
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
compl
β€”Finset.mem_compl
mem_iff πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
Finset.card
β€”eq_1
Set.mem_setOf_eq
mem_map_iff_mem_range πŸ“–mathematicalβ€”Set.Elem
Finset
Set.powersetCard
SetLike.instMembership
instSetLikeElemFinset
map
Set
Set.instMembership
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
SetLike.coe
β€”β€”
mem_ofFinEmb_iff_mem_range πŸ“–mathematicalβ€”Set.Elem
Finset
Set.powersetCard
SetLike.instMembership
instSetLikeElemFinset
ofFinEmb
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
ncard_eq πŸ“–mathematicalβ€”Set.ncard
SetLike.coe
Set.Elem
Finset
Set.powersetCard
instSetLikeElemFinset
β€”coe_coe
Set.ncard_coe_finset
Subtype.prop
nontrivial πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
Nontrivial
Set.Elem
Finset
Set.powersetCard
β€”Set.nontrivial_coe_sort
Set.one_lt_ncard_iff_nontrivial
instFiniteElemFinset
Finite.of_fintype
Nat.card_coe_set_eq
card
lt_self_iff_false
lt_trans
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENat.card_eq_coe_natCard
Nat.choose_eq_zero_iff
Nat.card_eq_fintype_card
Nat.choose_eq_one_iff
NeZero.of_pos
Infinite.instNontrivial
instInfinite
nontrivial' πŸ“–mathematicalNat.cardNontrivial
Set.Elem
Finset
Set.powersetCard
β€”Nat.finite_of_card_ne_zero
ne_zero_of_lt
nontrivial
ENat.card_eq_coe_natCard
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
Set.Elem
Finset
Set.powersetCard
Nat.card
β€”Finite.one_lt_card_iff_nontrivial
instFiniteElemFinset
card
Nat.choose_eq_zero_iff
Nat.choose_eq_one_iff
ofFinEmb_surjective πŸ“–mathematicalβ€”Function.Embedding
Set.Elem
Finset
Set.powersetCard
ofFinEmb
β€”Function.Embedding.exists_of_card_eq_finset
Fintype.card_fin
val_map πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
map
Finset.map
β€”β€”
val_ofFinEmb πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
ofFinEmb
Finset.map
Finset.univ
Fin.fintype
β€”coe_ofFinEmb
Finset.coe_map
Finset.coe_univ
Set.image_univ

---

← Back to Index