Documentation

Mathlib.Data.Set.PowersetCard

Combinations #

Combinations in a type are finite subsets of given cardinality.

def Set.powersetCard (α : Type u_1) (n : ) :
Set (Finset α)

The type of combinations of n elements of a type α.

See also Finset.powersetCard.

Equations
    Instances For
      @[simp]
      theorem Set.powersetCard.mem_iff {α : Type u_1} {n : } {s : Finset α} :
      instance Set.powersetCard.instSetLikeElemFinset {α : Type u_1} {n : } :
      SetLike (↑(powersetCard α n)) α
      Equations
        @[simp]
        theorem Set.powersetCard.coe_coe {α : Type u_1} {n : } {s : (powersetCard α n)} :
        s = s
        theorem Set.powersetCard.mem_coe_iff {α : Type u_1} {n : } {s : (powersetCard α n)} {a : α} :
        a s a s
        @[simp]
        theorem Set.powersetCard.card_eq {α : Type u_1} {n : } (s : (powersetCard α n)) :
        (↑s).card = n
        @[simp]
        theorem Set.powersetCard.ncard_eq {α : Type u_1} {n : } (s : (powersetCard α n)) :
        (↑s).ncard = n
        theorem Set.powersetCard.coe_nonempty_iff {α : Type u_1} {n : } {s : (powersetCard α n)} :
        (↑s).Nonempty 1 n
        theorem Set.powersetCard.coe_nontrivial_iff {α : Type u_1} {n : } {s : (powersetCard α n)} :
        (↑s).Nontrivial 1 < n
        theorem Set.powersetCard.eq_iff_subset {α : Type u_1} {n : } {s t : (powersetCard α n)} :
        s = t s t
        theorem Set.powersetCard.exists_mem_notMem {α : Type u_1} {n : } (hn : 1 n) ( : n < ENat.card α) {a b : α} (hab : a b) :
        ∃ (s : (powersetCard α n)), a s bs
        theorem Set.powersetCard.exists_mem_notMem_iff_ne {α : Type u_1} {n : } (s t : (powersetCard α n)) :
        s t as, at
        def Set.powersetCard.map {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) :
        (powersetCard β n)

        The map powersetCard α n → powersetCard β n induced by embedding f : α ↪ β.

        Equations
          Instances For
            theorem Set.powersetCard.mem_map_iff_mem_range {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) (b : β) :
            b map n f s b f '' s
            @[simp]
            theorem Set.powersetCard.coe_map {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) :
            (map n f s) = f '' s
            @[simp]
            theorem Set.powersetCard.val_map {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) :
            (map n f s) = Finset.map f s
            noncomputable def Set.powersetCard.ofSingleton {α : Type u_1} :
            α (powersetCard α 1)

            The equivalence sending a : α to the singleton {a}.

            Equations
              Instances For
                def Set.powersetCard.ofFinEmb (n : ) (β : Type u_2) (f : Fin n β) :
                (powersetCard β n)

                The image of an embedding f : Fin n ↪ β as an element of powersetCard β n.

                Equations
                  Instances For
                    @[simp]
                    theorem Set.powersetCard.mem_ofFinEmb_iff_mem_range (n : ) (β : Type u_2) (f : Fin n β) (b : β) :
                    b ofFinEmb n β f b range f
                    @[simp]
                    theorem Set.powersetCard.coe_ofFinEmb (n : ) (β : Type u_2) (f : Fin n β) :
                    (ofFinEmb n β f) = range f
                    @[simp]
                    theorem Set.powersetCard.val_ofFinEmb (n : ) (β : Type u_2) (f : Fin n β) :
                    def Set.powersetCard.compl {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :
                    (powersetCard α n) (powersetCard α m)

                    Complement of Finsets as an equivalence on Set.powersetCard.

                    Equations
                      Instances For
                        @[simp]
                        theorem Set.powersetCard.coe_compl {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} :
                        ((compl hm) s) = (↑s)
                        @[simp]
                        theorem Set.powersetCard.mem_compl {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} {a : α} :
                        a (compl hm) s as
                        theorem Set.powersetCard.compl_symm {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} :
                        (compl hm).symm = compl
                        theorem Set.powersetCard.exist_mem_powersetCard_of_inf (α : Type u_1) (n : ) (h : 0 < n) [Infinite α] (a : α) :
                        spowersetCard α n, a s
                        theorem Set.powersetCard.nontrivial {α : Type u_1} {n : } (h1 : 0 < n) (h2 : n < ENat.card α) :

                        If 0 < n < ENat.card α, then powersetCard α n is nontrivial.

                        theorem Set.powersetCard.nontrivial' {α : Type u_1} {n : } (h1 : 0 < n) (h2 : n < Nat.card α) :

                        A variant of Set.powersetCard.nontrivial that uses Nat.card.

                        @[simp]
                        theorem Set.powersetCard.eq_empty_iff {α : Type u_1} {n : } [Finite α] :