Aut ๐ | CompOp | 103 mathmath: PreGaloisCategory.instT2SpaceAutFunctorFintypeCat, PreGaloisCategory.mulAction_def, Iso.conjAut_apply, PreGaloisCategory.instFiniteAutOfIsConnected, PreGaloisCategory.autEmbedding_injective, PreGaloisCategory.instContinuousMulAutFunctorFintypeCat, PreGaloisCategory.autMap_comp, PreGaloisCategory.toAutMulEquiv_isHomeomorph, Aut.Aut_mul_def, PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, PreGaloisCategory.card_aut_le_card_fiber_of_connected, Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_hom, PreGaloisCategory.isGalois_iff_aux, PreGaloisCategory.instTotallyDisconnectedSpaceAutFunctorFintypeCat, Iso.conjAut_mul, PreGaloisCategory.autMapHom_apply, Aut.toEnd_apply, PreGaloisCategory.toAut_hom_app_apply, PreGaloisCategory.instFaithfulActionFintypeCatAutFunctorFunctorToAction, Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_inv, Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_hom, PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, Iso.trans_conjAut, PreGaloisCategory.autIsoFibers_inv_app, PreGaloisCategory.functorToContAction_map, PreGaloisCategory.continuous_mapAut_whiskeringRight, PreGaloisCategory.instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, Functor.map_conjAut, Aut.Aut_inv_def, PreGaloisCategory.toAutHomeo_apply, PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, PreGaloisCategory.exists_lift_of_continuous, PreGaloisCategory.toAutMulEquiv_apply, PreGaloisCategory.toAut_isHomeomorph, PreGaloisCategory.exists_lift_of_mono_of_isConnected, PreGaloisCategory.evaluation_aut_bijective_of_isGalois, PreGaloisCategory.instIsFundamentalGroupAutFunctorFintypeCat, PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, PreGaloisCategory.toAut_surjective_of_isPretransitive, PreGaloisCategory.autMulEquivAutGalois_symm_app, PreGaloisCategory.continuousSMul_aut_fiber, PreGaloisCategory.exists_autMap, Units.toAut_hom, PreGaloisCategory.FiberFunctor.isPretransitive_of_isConnected, PreGaloisCategory.evaluationEquivOfIsGalois_apply, PreGaloisCategory.aut_discreteTopology, PreGaloisCategory.nhds_one_has_basis_stabilizers, PreGaloisCategory.autMap_surjective_of_isGalois, PreGaloisCategory.functorToAction_map, PreGaloisCategory.autMap_apply_mul, Action.ฯAut_apply_hom, Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_inv, PreGaloisCategory.instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.autMulEquivAutGalois_ฯ, PreGaloisCategory.isGalois_iff_pretransitive, PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, PreGaloisCategory.autEmbedding_apply, PreGaloisCategory.stabilizer_normal_of_isGalois, PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, PreGaloisCategory.instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.evaluation_aut_surjective_of_isGalois, Units.toAut_inv, Iso.conjAut_hom, PreGaloisCategory.evaluationEquivOfIsGalois_symm_fiber, PreGaloisCategory.autEmbedding_range, PreGaloisCategory.IsGalois.quotientByAutTerminal, PreGaloisCategory.mulAction_naturality, PreGaloisCategory.AutGalois.ฯ_apply, PreGaloisCategory.exists_lift_of_mono, Iso.conjAut_zpow, PreGaloisCategory.functorToContAction_obj_obj, PreGaloisCategory.FiberFunctor.isPretransitive_of_isGalois, PreGaloisCategory.endEquivAutGalois_ฯ, PreGaloisCategory.instIsTopologicalGroupAutFunctorFintypeCat, PreGaloisCategory.exists_lift_of_quotient_openSubgroup, PreGaloisCategory.autGaloisSystem_map, PreGaloisCategory.toAut_bijective, PreGaloisCategory.isPretransitive_of_isGalois, PreGaloisCategory.AutGalois.ฯ_surjective, PreGaloisCategory.instCompactSpaceAutFunctorFintypeCat, PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Action.ฯAut_apply_inv, Iso.conjAut_pow, TannakaDuality.FiniteGroup.equivHom_surjective, PreGaloisCategory.toAut_injective_of_non_trivial, TannakaDuality.FiniteGroup.equivHom_injective, PreGaloisCategory.endMulEquivAutGalois_pi, FintypeCat.instFiniteAut, PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, PreGaloisCategory.evaluation_aut_injective_of_isConnected, PreGaloisCategory.instContinuousSMulAutFintypeCatObjCarrier, PreGaloisCategory.functorToAction_full, TannakaDuality.FiniteGroup.equivHom_apply, PreGaloisCategory.autGaloisSystem_obj_coe, PreGaloisCategory.toAut_continuous, PreGaloisCategory.autEmbedding_isClosedEmbedding, PreGaloisCategory.instContinuousInvAutFunctorFintypeCat, PreGaloisCategory.autMap_id, Iso.conjAut_trans, PreGaloisCategory.instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.autEmbedding_range_isClosed, PreGaloisCategory.functorToAction_comp_forgetโ_eq
|