Documentation Verification Report

Aut

๐Ÿ“ Source: Mathlib/Data/ZMod/Aut.lean

Statistics

MetricCount
DefinitionsAut, Aut, AddAutEquivUnits
3
TheoremsAddAutEquivUnits_apply, AddAutEquivUnits_symm_apply
2
Total5

CategoryTheory

Definitions

NameCategoryTheorems
Aut ๐Ÿ“–CompOp
103 mathmath: PreGaloisCategory.instT2SpaceAutFunctorFintypeCat, PreGaloisCategory.mulAction_def, Iso.conjAut_apply, PreGaloisCategory.instFiniteAutOfIsConnected, PreGaloisCategory.autEmbedding_injective, PreGaloisCategory.instContinuousMulAutFunctorFintypeCat, PreGaloisCategory.autMap_comp, PreGaloisCategory.toAutMulEquiv_isHomeomorph, Aut.Aut_mul_def, PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, PreGaloisCategory.card_aut_le_card_fiber_of_connected, Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_hom, PreGaloisCategory.isGalois_iff_aux, PreGaloisCategory.instTotallyDisconnectedSpaceAutFunctorFintypeCat, Iso.conjAut_mul, PreGaloisCategory.autMapHom_apply, Aut.toEnd_apply, PreGaloisCategory.toAut_hom_app_apply, PreGaloisCategory.instFaithfulActionFintypeCatAutFunctorFunctorToAction, Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_inv, Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_hom, PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, Iso.trans_conjAut, PreGaloisCategory.autIsoFibers_inv_app, PreGaloisCategory.functorToContAction_map, PreGaloisCategory.continuous_mapAut_whiskeringRight, PreGaloisCategory.instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, Functor.map_conjAut, Aut.Aut_inv_def, PreGaloisCategory.toAutHomeo_apply, PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, PreGaloisCategory.exists_lift_of_continuous, PreGaloisCategory.toAutMulEquiv_apply, PreGaloisCategory.toAut_isHomeomorph, PreGaloisCategory.exists_lift_of_mono_of_isConnected, PreGaloisCategory.evaluation_aut_bijective_of_isGalois, PreGaloisCategory.instIsFundamentalGroupAutFunctorFintypeCat, PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, PreGaloisCategory.toAut_surjective_of_isPretransitive, PreGaloisCategory.autMulEquivAutGalois_symm_app, PreGaloisCategory.continuousSMul_aut_fiber, PreGaloisCategory.exists_autMap, Units.toAut_hom, PreGaloisCategory.FiberFunctor.isPretransitive_of_isConnected, PreGaloisCategory.evaluationEquivOfIsGalois_apply, PreGaloisCategory.aut_discreteTopology, PreGaloisCategory.nhds_one_has_basis_stabilizers, PreGaloisCategory.autMap_surjective_of_isGalois, PreGaloisCategory.functorToAction_map, PreGaloisCategory.autMap_apply_mul, Action.ฯAut_apply_hom, Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_inv, PreGaloisCategory.instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.autMulEquivAutGalois_ฯ€, PreGaloisCategory.isGalois_iff_pretransitive, PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, PreGaloisCategory.autEmbedding_apply, PreGaloisCategory.stabilizer_normal_of_isGalois, PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, PreGaloisCategory.instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.evaluation_aut_surjective_of_isGalois, Units.toAut_inv, Iso.conjAut_hom, PreGaloisCategory.evaluationEquivOfIsGalois_symm_fiber, PreGaloisCategory.autEmbedding_range, PreGaloisCategory.IsGalois.quotientByAutTerminal, PreGaloisCategory.mulAction_naturality, PreGaloisCategory.AutGalois.ฯ€_apply, PreGaloisCategory.exists_lift_of_mono, Iso.conjAut_zpow, PreGaloisCategory.functorToContAction_obj_obj, PreGaloisCategory.FiberFunctor.isPretransitive_of_isGalois, PreGaloisCategory.endEquivAutGalois_ฯ€, PreGaloisCategory.instIsTopologicalGroupAutFunctorFintypeCat, PreGaloisCategory.exists_lift_of_quotient_openSubgroup, PreGaloisCategory.autGaloisSystem_map, PreGaloisCategory.toAut_bijective, PreGaloisCategory.isPretransitive_of_isGalois, PreGaloisCategory.AutGalois.ฯ€_surjective, PreGaloisCategory.instCompactSpaceAutFunctorFintypeCat, PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Action.ฯAut_apply_inv, Iso.conjAut_pow, TannakaDuality.FiniteGroup.equivHom_surjective, PreGaloisCategory.toAut_injective_of_non_trivial, TannakaDuality.FiniteGroup.equivHom_injective, PreGaloisCategory.endMulEquivAutGalois_pi, FintypeCat.instFiniteAut, PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, PreGaloisCategory.evaluation_aut_injective_of_isConnected, PreGaloisCategory.instContinuousSMulAutFintypeCatObjCarrier, PreGaloisCategory.functorToAction_full, TannakaDuality.FiniteGroup.equivHom_apply, PreGaloisCategory.autGaloisSystem_obj_coe, PreGaloisCategory.toAut_continuous, PreGaloisCategory.autEmbedding_isClosedEmbedding, PreGaloisCategory.instContinuousInvAutFunctorFintypeCat, PreGaloisCategory.autMap_id, Iso.conjAut_trans, PreGaloisCategory.instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, PreGaloisCategory.autEmbedding_range_isClosed, PreGaloisCategory.functorToAction_comp_forgetโ‚‚_eq

RootPairing

Definitions

NameCategoryTheorems
Aut ๐Ÿ“–CompOp
27 mathmath: weylGroup_toSubmonoid, span_orbit_eq_top, range_weylGroup_coweightHom, Equiv.weightHom_toLinearMap, Equiv.toEndUnit_inv, weylGroup_apply_root, Equiv.root_indexEquiv_eq_smul, Equiv.coweightHom_injective, isSimpleModule_weylGroupRootRep, InvariantForm.apply_weylGroup_smul, isSimpleModule_weylGroupRootRep_iff, Equiv.weightHom_apply, reflection_mem_weylGroup, range_weylGroupToPerm, Equiv.indexHom_apply, Equiv.instSMulCommClassAut, weylGroup.ofIdx_smul, Equiv.coweightHom_op, Equiv.reflection_inv, Equiv.weightHom_injective, Equiv.reflection_smul, range_weylGroup_weightHom, Equiv.coweightHom_toLinearMap, Equiv.instSMulCommClassMulOppositeAut, Equiv.coweightHom_apply, Equiv.indexEquiv_inv, Equiv.toEndUnit_val

ZMod

Definitions

NameCategoryTheorems
AddAutEquivUnits ๐Ÿ“–CompOp
2 mathmath: AddAutEquivUnits_symm_apply, AddAutEquivUnits_apply

Theorems

NameKindAssumesProvesValidatesDepends On
AddAutEquivUnits_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
AddAut
ZMod
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddAut.instGroup
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
AddAutEquivUnits
Units.mkOfMulEqOne
AddEquiv
AddEquiv.instEquivLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
โ€”โ€”
AddAutEquivUnits_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
AddAut
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddAut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
AddAutEquivUnits
MonoidHom
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Units.instMulOneClass
MonoidHom.instFunLike
AddAut.mulLeft
โ€”โ€”

---

โ† Back to Index