Documentation Verification Report

GaloisField

📁 Source: Mathlib/FieldTheory/Finite/GaloisField.lean

Statistics

MetricCount
DefinitionsalgEquivOfCardEq, ringEquivOfCardEq, GaloisField, algEquivGaloisField, algEquivGaloisFieldOfFintype, equivZmodP, instAlgebraZModGaloisField, instCharPGaloisField, instFieldGaloisField, instFiniteDimensionalZModGaloisField, instFiniteGaloisField, instInhabitedGaloisField, instIsSplittingFieldZModGaloisFieldHSubPolynomialHPowNatX
13
TheoremsalgebraMap_norm_eq_pow, card_algHom_of_finrank_dvd, isSplittingField_of_card_eq, isSplittingField_of_nat_card_eq, isSplittingField_sub, natCard_algHom_of_finrank_dvd, nonempty_algHom_iff_finrank_dvd, nonempty_algHom_of_finrank_dvd, norm_surjective, pow_finrank_eq_card, pow_finrank_eq_natCard, splits_X_pow_card_sub_X, splits_X_pow_nat_card_sub_X, unitsMap_norm_surjective, card, finrank, instIsGaloisOfFinite, splits_zmod_X_pow_sub_X, galois_poly_separable
19
Total32

FiniteField

Definitions

NameCategoryTheorems
algEquivOfCardEq 📖CompOp
ringEquivOfCardEq 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_norm_eq_pow 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.card
Finite.of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Module.Projective.of_free
Module.Free.of_divisionRing
Algebra.norm_eq_prod_automorphisms
GaloisField.instIsGaloisOfFinite
Algebra.IsAlgebraic.of_finite
Function.Bijective.prod_comp
bijective_frobeniusAlgEquivOfAlgebraic_pow
Finset.prod_congr
AlgEquiv.coe_pow
pow_iterate
Finset.prod_pow_eq_pow_sum
Fin.sum_univ_eq_sum_range
Nat.geomSum_eq
Fintype.one_lt_card
card_algHom_of_finrank_dvd 📖mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Fintype.card
AlgHom
minpoly.AlgHom.fintype
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Module.instFiniteDimensionalOfIsReflexive
Ring.toAddCommGroup
Ring.toSemiring
Module.instIsReflexiveOfFiniteOfProjective
AddCommGroup.toAddCommMonoid
Module.IsNoetherian.finite
CommSemiring.toSemiring
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Module.Projective.of_free
Module.Free.of_divisionRing
instIsDomain
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Module.Projective.of_free
Module.Free.of_divisionRing
Fintype.card_eq_nat_card
natCard_algHom_of_finrank_dvd
isSplittingField_of_card_eq 📖mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
Polynomial.IsSplittingField
ZMod
ZMod.instField
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
isSplittingField_sub
isSplittingField_of_nat_card_eq 📖mathematicalNat.card
Monoid.toNatPow
Nat.instMonoid
Polynomial.IsSplittingField
ZMod
ZMod.instField
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Nat.card_pos_iff
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nat.Prime.pos
Fact.out
Nat.card_eq_fintype_card
isSplittingField_sub
isSplittingField_sub 📖mathematicalPolynomial.IsSplittingField
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Fintype.card
X_pow_card_sub_X_natDegree_eq
Fintype.one_lt_card
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
Polynomial.splits_iff_card_roots
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
roots_X_pow_card_sub_X
Finset.card_def
Finset.card_univ
Polynomial.roots.congr_simp
Finset.val_toFinset
Finset.coe_univ
Algebra.adjoin_univ
natCard_algHom_of_finrank_dvd 📖mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Nat.card
AlgHom
nonempty_algHom_of_finrank_dvd
Finite.of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.card_congr
IsScalarTower.of_algHom
IsGalois.to_normal
GaloisField.instIsGaloisOfFinite
IsGalois.card_aut_eq_finrank
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Module.Projective.of_free
Module.Free.of_divisionRing
nonempty_algHom_iff_finrank_dvd 📖mathematicalAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Module.finrank_mul_finrank
IsScalarTower.of_algHom
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
dvd_mul_right
nonempty_algHom_of_finrank_dvd
nonempty_algHom_of_finrank_dvd 📖mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
AlgHomFinite.of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.finite_of_finrank_pos
commRing_strongRankCondition
Module.Free.of_divisionRing
Module.finrank_pos
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
isNoetherian_of_finite
Module.Projective.of_free
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Module.finite_of_finite
isSplittingField_sub
Polynomial.Splits.of_dvd
Polynomial.IsSplittingField.splits
Polynomial.map_ne_zero
X_pow_card_sub_X_ne_zero
Fintype.one_lt_card
Module.card_eq_pow_finrank
Polynomial.map_dvd_map'
dvd_pow_pow_sub_self_of_dvd
norm_surjective 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
eq_or_ne
Algebra.norm_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Module.Projective.of_free
unitsMap_norm_surjective
pow_finrank_eq_card 📖mathematicalMonoid.toNatPow
Nat.instMonoid
Module.finrank
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
AddCommGroup.toAddCommMonoid
Fintype.card
pow_finrank_eq_natCard
Finite.of_fintype
Fintype.card_eq_nat_card
pow_finrank_eq_natCard 📖mathematicalMonoid.toNatPow
Nat.instMonoid
Module.finrank
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
AddCommGroup.toAddCommMonoid
Nat.card
Module.natCard_eq_pow_finrank
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Module.Projective.of_free
Module.Free.of_divisionRing
Nat.card_zmod
splits_X_pow_card_sub_X 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
ZMod
CommSemiring.toSemiring
Semifield.toCommSemiring
ZMod.instField
algebraMap
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Fintype.card
Polynomial.IsSplittingField.splits
isSplittingField_sub
splits_X_pow_nat_card_sub_X 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
ZMod
CommSemiring.toSemiring
Semifield.toCommSemiring
ZMod.instField
algebraMap
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Nat.card
Nat.card_eq_fintype_card
Polynomial.IsSplittingField.splits
isSplittingField_sub
unitsMap_norm_surjective 📖mathematicalUnits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.instFunLike
Units.map
Algebra.norm
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Finite.of_injective_finite_range
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Subtype.finite
MonoidHom.surjective_of_card_ker_le_div
instFiniteUnits
Nat.card_units
Set.ncard_coe_finset
SetLike.coe_sort_coe
Nat.card_coe_set_eq
Set.ext
algebraMap_norm_eq_pow
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finset.filter.congr_simp
Finset.coe_filter
IsCyclic.card_pow_eq_one_le
instIsCyclicUnitsOfFinite
instIsDomain
Nat.card_le_card_of_injective
Finite.one_lt_card

GaloisField

Definitions

NameCategoryTheorems
algEquivGaloisField 📖CompOp
algEquivGaloisFieldOfFintype 📖CompOp
equivZmodP 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
card 📖mathematicalNat.card
GaloisField
Monoid.toNatPow
Nat.instMonoid
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Nat.card_eq_fintype_card
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Module.card_fintype
Module.finrank_eq_card_basis
commRing_strongRankCondition
ZMod.nontrivial
ZMod.card
finrank
finrank 📖mathematicalModule.finrank
ZMod
GaloisField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instFieldGaloisField
Algebra.toModule
Semifield.toCommSemiring
instAlgebraZModGaloisField
Nat.Prime.one_lt
Fact.out
FiniteField.X_pow_card_pow_sub_X_ne_zero
instIsDomain
Polynomial.card_rootSet_eq_natDegree
galois_poly_separable
ZMod.charP
dvd_pow
dvd_refl
Polynomial.SplittingField.splits
FiniteField.X_pow_card_pow_sub_X_natDegree_eq
Set.eq_univ_iff_forall
Polynomial.SplittingField.adjoin_rootSet
Subring.closure_induction
Polynomial.mem_rootSet_of_ne
ZMod.instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_X
RingHom.instRingHomClass
ZMod.pow_card_pow
sub_self
Polynomial.IsSplittingField.instIsTorsionFreeSplittingField
Polynomial.coeff_zero_eq_aeval_zero'
Polynomial.coeff_sub
Polynomial.coeff_X_pow
Polynomial.coeff_X_zero
sub_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Polynomial.aeval_sub
one_pow
Polynomial.aeval_X_pow
add_pow_char_pow
sub_neg_eq_add
neg_pow
neg_one_pow_char_pow
neg_mul
one_mul
neg_add_cancel
mul_pow
Nat.pow_right_injective
NeZero.of_gt'
ZMod.card
Module.card_eq_pow_finrank
Fintype.ofEquiv_card
Fintype.card_congr'
instIsGaloisOfFinite 📖mathematicalIsGaloisnonempty_fintype
CharP.exists
IsGalois.of_separable_splitting_field
FiniteField.isSplittingField_sub
galois_poly_separable
FiniteField.card
charP_of_injective_algebraMap'
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
dvd_pow_self
PNat.ne_zero
splits_zmod_X_pow_sub_X 📖mathematicalPolynomial.Splits
ZMod
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Nat.Prime.one_lt
Fact.out
ZMod.instIsDomain
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
instIsDomain
ZMod.card
FiniteField.roots_X_pow_card_sub_X
FiniteField.X_pow_card_sub_X_natDegree_eq
Polynomial.splits_iff_card_roots
Finset.card_def
Finset.card_univ

(root)

Definitions

NameCategoryTheorems
GaloisField 📖CompOp
3 mathmath: FiniteField.instIsScalarTowerZModExtension, GaloisField.finrank, GaloisField.card
instAlgebraZModGaloisField 📖CompOp
1 mathmath: GaloisField.finrank
instCharPGaloisField 📖CompOp
instFieldGaloisField 📖CompOp
2 mathmath: FiniteField.instIsScalarTowerZModExtension, GaloisField.finrank
instFiniteDimensionalZModGaloisField 📖CompOp
instFiniteGaloisField 📖CompOp
instInhabitedGaloisField 📖CompOp
instIsSplittingFieldZModGaloisFieldHSubPolynomialHPowNatX 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
galois_poly_separable 📖mathematicalPolynomial.Separable
CommRing.toCommSemiring
Polynomial
CommSemiring.toSemiring
Polynomial.instSub
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.derivative_sub
Polynomial.derivative_X_pow
Polynomial.derivative_X
Polynomial.C_eq_natCast
CharP.cast_eq_zero_iff
Polynomial.instCharP
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add

---

← Back to Index