Documentation

Mathlib.FieldTheory.Finite.GaloisField

Galois fields #

If p is a prime number, and n a natural number, then GaloisField p n is defined as the splitting field of X^(p^n) - X over ZMod p. It is a finite field with p ^ n elements.

Main definition #

Main Results #

def GaloisField (p : ) [Fact (Nat.Prime p)] (n : ) :

A finite field with p ^ n elements. Every field with the same cardinality is (non-canonically) isomorphic to this field.

Equations
    Instances For
      instance instFieldGaloisField (p : ) [Fact (Nat.Prime p)] (n : ) :
      Equations
        instance instCharPGaloisField (p : ) [Fact (Nat.Prime p)] (n : ) :
        Equations
          instance instFiniteGaloisField (p : ) [Fact (Nat.Prime p)] (n : ) :
          Equations
            theorem GaloisField.finrank (p : ) [h_prime : Fact (Nat.Prime p)] {n : } (h : n 0) :
            theorem GaloisField.card (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) (h : n 0) :

            A Galois field with exponent 1 is equivalent to ZMod

            Equations
              Instances For
                def GaloisField.algEquivGaloisFieldOfFintype (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) {K : Type u_1} [Field K] [Fintype K] [Algebra (ZMod p) K] (h : Fintype.card K = p ^ n) :

                Any finite field is (possibly noncanonically) isomorphic to some Galois field.

                Equations
                  Instances For
                    @[instance 100]
                    instance GaloisField.instIsGaloisOfFinite {K : Type u_2} {K' : Type u_3} [Field K] [Field K'] [Finite K'] [Algebra K K'] :
                    def GaloisField.algEquivGaloisField (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) {K : Type u_1} [Field K] [Algebra (ZMod p) K] (h : Nat.card K = p ^ n) :

                    Any finite field is (possibly noncanonically) isomorphic to some Galois field.

                    Equations
                      Instances For
                        theorem FiniteField.algebraMap_norm_eq_pow {K : Type u_1} {K' : Type u_2} [Field K] [Field K'] [Algebra K K'] [Finite K'] {x : K'} :
                        (algebraMap K K') ((Algebra.norm K) x) = x ^ ((Nat.card K' - 1) / (Nat.card K - 1))
                        def FiniteField.algEquivOfCardEq {K : Type u_1} {K' : Type u_2} [Field K] [Field K'] [Fintype K] [Fintype K'] (p : ) [h_prime : Fact (Nat.Prime p)] [Algebra (ZMod p) K] [Algebra (ZMod p) K'] (hKK' : Fintype.card K = Fintype.card K') :

                        Uniqueness of finite fields: Any two finite fields of the same cardinality are (possibly noncanonically) isomorphic

                        Equations
                          Instances For
                            def FiniteField.ringEquivOfCardEq {K : Type u_1} {K' : Type u_2} [Field K] [Field K'] [Fintype K] [Fintype K'] (hKK' : Fintype.card K = Fintype.card K') :
                            K ≃+* K'

                            Uniqueness of finite fields: Any two finite fields of the same cardinality are (possibly noncanonically) isomorphic

                            Equations
                              Instances For
                                theorem FiniteField.nonempty_algHom_of_finrank_dvd {F : Type u_3} {K : Type u_4} {L : Type u_5} [Field F] [Field K] [Algebra F K] [Field L] [Algebra F L] [Finite L] (h : Module.finrank F K Module.finrank F L) :