Documentation Verification Report

Fixed

๐Ÿ“ Source: Mathlib/FieldTheory/Fixed.lean

Statistics

MetricCount
Definitionsfintype, intermediateField, subfield, instAlgebraSubtypeMemSubfieldSubfield, minpoly, subfield, toAlgAutMulEquiv, toAlgHomEquiv, IsInvariantSubfield, toMulSemiringAction
10
Theoremscard_le, card_le, intermediateField_mem_iff, subfield_mem_iff, coe_algebraMap, finrank_eq_card, finrank_le_card, instFiniteDimensionalSubtypeMemSubfieldSubfield, instIsInvariantSubfieldSubfield, instSMulCommClassSubtypeMemSubfieldSubfield, isIntegral, isSeparable, linearIndependent_smul_of_linearIndependent, evalโ‚‚, evalโ‚‚', irreducible, irreducible_aux, monic, ne_one, of_evalโ‚‚, minpoly_eq_minpoly, normal, rank_le_card, smul, smulCommClass', smul_polynomial, toAlgAut_bijective, toAlgAut_surjective, toAlgHom_bijective, smul_mem, cardinalMk_algHom, finrank_algHom, instIsInvariantSubringOfIsInvariantSubfield, linearIndependent_toLinearMap
34
Total44

AlgEquiv

Definitions

NameCategoryTheorems
fintype ๐Ÿ“–CompOp
6 mathmath: FiniteField.card_algEquiv_extension, card_le, groupCohomology.norm_ofAlgebraAutOnUnits_eq, Algebra.norm_eq_prod_automorphisms, trace_eq_sum_automorphisms, prod_galRestrict_eq_norm

Theorems

NameKindAssumesProvesValidatesDepends On
card_le ๐Ÿ“–mathematicalโ€”Fintype.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
fintype
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
โ€”instIsDomain
AlgHom.card_le
Fintype.ofEquiv_card

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
card_le ๐Ÿ“–mathematicalโ€”Fintype.card
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
minpoly.AlgHom.fintype
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
โ€”Algebra.to_smulCommClass
instIsDomain
finrank_algHom
Module.finrank_linearMap_self
Module.Free.of_divisionRing
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing

FixedBy

Definitions

NameCategoryTheorems
intermediateField ๐Ÿ“–CompOp
1 mathmath: intermediateField_mem_iff
subfield ๐Ÿ“–CompOp
1 mathmath: subfield_mem_iff

Theorems

NameKindAssumesProvesValidatesDepends On
intermediateField_mem_iff ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
intermediateField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
โ€”โ€”
subfield_mem_iff ๐Ÿ“–mathematicalโ€”Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
โ€”โ€”

FixedPoints

Definitions

NameCategoryTheorems
instAlgebraSubtypeMemSubfieldSubfield ๐Ÿ“–CompOp
10 mathmath: isSeparable, normal, toAlgAut_surjective, isIntegral, toAlgHom_bijective, IsGaloisGroup.fixedPoints, minpoly_eq_minpoly, toAlgAut_bijective, IsGalois.of_fixed_field, coe_algebraMap
minpoly ๐Ÿ“–CompOp
6 mathmath: minpoly.monic, minpoly.irreducible, minpoly.evalโ‚‚', minpoly_eq_minpoly, minpoly.evalโ‚‚, minpoly.of_evalโ‚‚
subfield ๐Ÿ“–CompOp
23 mathmath: instFiniteDimensionalSubtypeMemSubfieldSubfield, finrank_eq_card, minpoly.monic, minpoly.irreducible, isSeparable, minpoly.evalโ‚‚', rank_le_card, instSMulCommClassSubtypeMemSubfieldSubfield, normal, finrank_le_card, toAlgAut_surjective, isIntegral, smul_polynomial, toAlgHom_bijective, IsGaloisGroup.fixedPoints, minpoly_eq_minpoly, toAlgAut_bijective, smul, smulCommClass', IsGalois.of_fixed_field, coe_algebraMap, instIsInvariantSubfieldSubfield, minpoly.evalโ‚‚
toAlgAutMulEquiv ๐Ÿ“–CompOpโ€”
toAlgHomEquiv ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_algebraMap ๐Ÿ“–mathematicalโ€”algebraMap
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebraSubtypeMemSubfieldSubfield
Subfield.subtype
โ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
finrank_eq_card ๐Ÿ“–mathematicalโ€”Module.finrank
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
Fintype.card
โ€”le_antisymm
finrank_le_card
Algebra.to_smulCommClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
instIsDomain
instFiniteDimensionalSubtypeMemSubfieldSubfield
Finite.of_fintype
Fintype.card_le_of_injective
instSMulCommClassSubtypeMemSubfieldSubfield
MulSemiringAction.toAlgHom_injective
finrank_algHom
Module.finrank_linearMap_self
Module.Free.of_divisionRing
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
finrank_le_card ๐Ÿ“–mathematicalโ€”Module.finrank
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
Fintype.card
โ€”Nat.cast_le
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
Module.finrank_eq_rank
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
instFiniteDimensionalSubtypeMemSubfieldSubfield
Finite.of_fintype
rank_le_card
instFiniteDimensionalSubtypeMemSubfieldSubfield ๐Ÿ“–mathematicalโ€”FiniteDimensional
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subfield.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Subfield.instModuleSubtypeMem
AddCommGroup.toAddCommMonoid
Semiring.toModule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
โ€”nonempty_fintype
IsNoetherian.iff_fg
IsNoetherian.iff_rank_lt_aleph0
LE.le.trans_lt
rank_le_card
Cardinal.natCast_lt_aleph0
instIsInvariantSubfieldSubfield ๐Ÿ“–mathematicalโ€”IsInvariantSubfield
subfield
โ€”โ€”
instSMulCommClassSubtypeMemSubfieldSubfield ๐Ÿ“–mathematicalโ€”SMulCommClass
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
Subfield.instSMulSubtypeMem
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
โ€”smul_mul'
Subtype.prop
isIntegral ๐Ÿ“–mathematicalโ€”IsIntegral
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
DivisionRing.toRing
instAlgebraSubtypeMemSubfieldSubfield
โ€”nonempty_fintype
minpoly.monic
minpoly.evalโ‚‚
isSeparable ๐Ÿ“–mathematicalโ€”Algebra.IsSeparable
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
DivisionRing.toRing
instAlgebraSubtypeMemSubfieldSubfield
โ€”nonempty_fintype
IsSeparable.eq_1
minpoly_eq_minpoly
Polynomial.separable_map
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.eq_1
Subfield.toSubring_subtype_eq_subtype
Polynomial.map_toSubring
Polynomial.separable_prod_X_sub_C_iff
MulAction.injective_ofQuotientStabilizer
linearIndependent_smul_of_linearIndependent ๐Ÿ“–mathematicalLinearIndepOn
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
MulAction.toFun
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Pi.addCommMonoid
Pi.Function.module
โ€”Finset.coe_empty
Finset.induction_on
linearIndependent_empty_type
Finset.coe_insert
linearIndepOn_insert
Finset.mem_coe
Finsupp.mem_span_image_iff_linearCombination
eq_of_sub_eq_zero
linearIndependent_iff'
Finset.sum_attach
Finset.sum_apply
Pi.smul_apply
sub_smul
smul_eq_mul
Finset.sum_sub_distrib
Pi.zero_apply
sub_eq_zero
MulAction.toFun_apply
mul_inv_cancel_left
SemigroupAction.mul_smul
smul_mul'
Finset.smul_sum
Finsupp.linearCombination_apply_of_mem_supported
smul_smul
Finset.mem_attach
Submodule.sum_mem
Submodule.smul_mem
Submodule.subset_span
Set.image_congr
Set.image_id'
Finset.sum_congr
one_smul
minpoly_eq_minpoly ๐Ÿ“–mathematicalโ€”minpoly
minpoly
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
DivisionRing.toRing
instAlgebraSubtypeMemSubfieldSubfield
โ€”minpoly.eq_of_irreducible_of_monic
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.irreducible
minpoly.evalโ‚‚
minpoly.monic
normal ๐Ÿ“–mathematicalโ€”Normal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subfield.toField
instAlgebraSubtypeMemSubfieldSubfield
โ€”IsIntegral.isAlgebraic
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
isIntegral
nonempty_fintype
minpoly_eq_minpoly
minpoly.eq_1
coe_algebraMap
Subfield.toSubring_subtype_eq_subtype
Polynomial.map_toSubring
prodXSubSMul.eq_1
Polynomial.Splits.prod
Polynomial.Splits.X_sub_C
rank_le_card ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Module.rank
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
Cardinal.instNatCast
Fintype.card
โ€”rank_le
Cardinal.mk_coe_finset
Cardinal.lift_natCast
rank_fun'
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
LinearIndependent.cardinal_lift_le_rank
linearIndependent_smul_of_linearIndependent
smul ๐Ÿ“–mathematicalโ€”Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Subfield.instRingSubtypeMem
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
IsInvariantSubfield.toMulSemiringAction
instIsInvariantSubfieldSubfield
โ€”instIsInvariantSubfieldSubfield
smulCommClass' ๐Ÿ“–mathematicalโ€”SMulCommClass
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
Subfield.instSMulSubtypeMem
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
โ€”SMulCommClass.symm
instSMulCommClassSubtypeMemSubfieldSubfield
smul_polynomial ๐Ÿ“–mathematicalโ€”Polynomial
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
SMulZeroClass.toSMul
Polynomial.instZero
Polynomial.smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Subfield.instRingSubtypeMem
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
IsInvariantSubfield.toMulSemiringAction
instIsInvariantSubfieldSubfield
โ€”Polynomial.induction_on
instIsInvariantSubfieldSubfield
Polynomial.smul_C
smul
smul_add
smul_mul'
smul_pow'
Polynomial.smul_X
toAlgAut_bijective ๐Ÿ“–mathematicalโ€”Function.Bijective
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebraSubtypeMemSubfieldSubfield
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgEquiv.aut
MonoidHom.instFunLike
MulSemiringAction.toAlgAut
instSMulCommClassSubtypeMemSubfieldSubfield
โ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
instSMulCommClassSubtypeMemSubfieldSubfield
Function.Bijective.injective
toAlgHom_bijective
DFunLike.ext_iff
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Function.Bijective.surjective
toAlgAut_surjective ๐Ÿ“–mathematicalโ€”AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebraSubtypeMemSubfieldSubfield
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgEquiv.aut
MonoidHom.instFunLike
MulSemiringAction.toAlgAut
instSMulCommClassSubtypeMemSubfieldSubfield
โ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
instSMulCommClassSubtypeMemSubfieldSubfield
MonoidHom.normal_ker
Quotient.inductionOnโ‚‚'
QuotientGroup.eq
MonoidHom.mem_ker
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
map_inv
inv_mul_eq_one
AlgEquiv.ext_iff
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
AlgEquiv.commutes'
Function.Bijective.surjective
toAlgAut_bijective
Subgroup.finite_quotient_of_finiteIndex
Subgroup.finiteIndex_ker
Subgroup.instFiniteSubtypeMem
Finite.algEquiv
Finite.algHom
Module.Free.of_divisionRing
instFiniteDimensionalSubtypeMemSubfieldSubfield
instIsDomain
QuotientGroup.induction_on
toAlgHom_bijective ๐Ÿ“–mathematicalโ€”Function.Bijective
AlgHom
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebraSubtypeMemSubfieldSubfield
MulSemiringAction.toAlgHom
instSMulCommClassSubtypeMemSubfieldSubfield
โ€”nonempty_fintype
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
instSMulCommClassSubtypeMemSubfieldSubfield
instIsDomain
instFiniteDimensionalSubtypeMemSubfieldSubfield
Fintype.bijective_iff_injective_and_card
MulSemiringAction.toAlgHom_injective
le_antisymm
Fintype.card_le_of_injective
finrank_eq_card
LE.le.trans_eq
Algebra.to_smulCommClass
finrank_algHom
Module.finrank_linearMap_self
Module.Free.of_divisionRing
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing

FixedPoints.minpoly

Theorems

NameKindAssumesProvesValidatesDepends On
evalโ‚‚ ๐Ÿ“–mathematicalโ€”Polynomial.evalโ‚‚
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Subfield.toSubring
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Ring.toSemiring
Subring.toRing
Subring.subtype
FixedPoints.minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
โ€”prodXSubSMul.eval
Polynomial.evalโ‚‚_eq_eval_map
Polynomial.map_toSubring
evalโ‚‚' ๐Ÿ“–mathematicalโ€”Polynomial.evalโ‚‚
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Subfield.toDivisionRing
Subfield.subtype
FixedPoints.minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
โ€”evalโ‚‚
irreducible ๐Ÿ“–mathematicalโ€”Irreducible
Polynomial
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
FixedPoints.minpoly
โ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Polynomial.irreducible_of_monic
SubsemiringClass.noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
monic
ne_one
irreducible_aux
irreducible_aux ๐Ÿ“–mathematicalPolynomial.Monic
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
Polynomial
Polynomial.instMul
FixedPoints.minpoly
Polynomial.instOneโ€”dvd_mul_right
dvd_mul_left
evalโ‚‚
mul_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.evalโ‚‚_mul
Polynomial.eq_of_monic_of_associated
monic
associated_of_dvd_dvd
Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd
AddMemClass.isCancelAdd
NonUnitalSubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
of_evalโ‚‚
mul_right_inj'
Polynomial.Monic.ne_zero
SubsemiringClass.nontrivial
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
mul_one
mul_left_inj'
Polynomial.instIsRightCancelMulZeroOfIsCancelAdd
IsCancelMulZero.toIsRightCancelMulZero
one_mul
monic ๐Ÿ“–mathematicalโ€”Polynomial.Monic
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
FixedPoints.minpoly
โ€”Polynomial.monic_toSubring
prodXSubSMul.monic
ne_one ๐Ÿ“–โ€”โ€”โ€”โ€”evalโ‚‚
one_ne_zero
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.evalโ‚‚_one
of_evalโ‚‚ ๐Ÿ“–mathematicalPolynomial.evalโ‚‚
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Subfield.toDivisionRing
Subfield.subtype
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
Polynomial.commRing
FixedPoints.minpoly
โ€”Polynomial.map_dvd_map'
eq_1
Subfield.toSubring_subtype_eq_subtype
Polynomial.map_toSubring
prodXSubSMul.eq_1
Fintype.prod_dvd_of_coprime
Polynomial.pairwise_coprime_X_sub_C
MulAction.injective_ofQuotientStabilizer
QuotientGroup.induction_on
Polynomial.dvd_iff_isRoot
Polynomial.IsRoot.def
Polynomial.eval_smul'
instIsInvariantSubringOfIsInvariantSubfield
FixedPoints.instIsInvariantSubfieldSubfield
MulSemiringActionSemiHomClass.toRingHomClass
MulSemiringActionHom.instMulSemiringActionSemiHomClassCoeMonoidHom
IsInvariantSubring.coe_subtypeHom'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
MulSemiringActionHom.coe_polynomial
map_smul
DistribMulActionSemiHomClass.toMulActionSemiHomClass
MulSemiringActionSemiHomClass.toDistribMulActionSemiHomClass
FixedPoints.smul_polynomial
Polynomial.eval_map
smul_zero

IsInvariantSubfield

Definitions

NameCategoryTheorems
toMulSemiringAction ๐Ÿ“–CompOp
2 mathmath: FixedPoints.smul_polynomial, FixedPoints.smul

Theorems

NameKindAssumesProvesValidatesDepends On
smul_mem ๐Ÿ“–mathematicalSubfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
โ€”โ€”

(root)

Definitions

NameCategoryTheorems
IsInvariantSubfield ๐Ÿ“–CompData
1 mathmath: FixedPoints.instIsInvariantSubfieldSubfield

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalMk_algHom ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
AlgHom
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Cardinal.instNatCast
Module.finrank
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
LinearMap.addCommMonoid
LinearMap.module
Semiring.toModule
Algebra.to_smulCommClass
โ€”LinearIndependent.cardinalMk_le_finrank
Algebra.to_smulCommClass
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Finite.linearMap
Module.Free.of_divisionRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
linearIndependent_toLinearMap
instIsDomain
finrank_algHom ๐Ÿ“–mathematicalโ€”Fintype.card
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
minpoly.AlgHom.fintype
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Module.finrank
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
LinearMap.addCommMonoid
LinearMap.module
Semiring.toModule
Algebra.to_smulCommClass
โ€”LinearIndependent.fintype_card_le_finrank
Algebra.to_smulCommClass
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Finite.linearMap
Module.Free.of_divisionRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
instIsDomain
linearIndependent_toLinearMap
instIsInvariantSubringOfIsInvariantSubfield ๐Ÿ“–mathematicalโ€”IsInvariantSubring
DivisionRing.toRing
Field.toDivisionRing
Subfield.toSubring
โ€”IsInvariantSubfield.smul_mem
linearIndependent_toLinearMap ๐Ÿ“–mathematicalโ€”LinearIndependent
AlgHom
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
AlgHom.toLinearMap
LinearMap.addCommMonoid
LinearMap.module
Semiring.toModule
Algebra.to_smulCommClass
โ€”Algebra.to_smulCommClass
LinearIndependent.comp
linearIndependent_monoidHom
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.ext
DFunLike.ext_iff
LinearIndependent.of_comp

---

โ† Back to Index