| Name | Category | Theorems |
instAlgebraSubtypeMemSubfieldSubfield ๐ | CompOp | 10 mathmath: isSeparable, normal, toAlgAut_surjective, isIntegral, toAlgHom_bijective, IsGaloisGroup.fixedPoints, minpoly_eq_minpoly, toAlgAut_bijective, IsGalois.of_fixed_field, coe_algebraMap
|
minpoly ๐ | CompOp | 6 mathmath: minpoly.monic, minpoly.irreducible, minpoly.evalโ', minpoly_eq_minpoly, minpoly.evalโ, minpoly.of_evalโ
|
subfield ๐ | CompOp | 23 mathmath: instFiniteDimensionalSubtypeMemSubfieldSubfield, finrank_eq_card, minpoly.monic, minpoly.irreducible, isSeparable, minpoly.evalโ', rank_le_card, instSMulCommClassSubtypeMemSubfieldSubfield, normal, finrank_le_card, toAlgAut_surjective, isIntegral, smul_polynomial, toAlgHom_bijective, IsGaloisGroup.fixedPoints, minpoly_eq_minpoly, toAlgAut_bijective, smul, smulCommClass', IsGalois.of_fixed_field, coe_algebraMap, instIsInvariantSubfieldSubfield, minpoly.evalโ
|
toAlgAutMulEquiv ๐ | CompOp | โ |
toAlgHomEquiv ๐ | CompOp | โ |