Documentation

Mathlib.FieldTheory.Fixed

Fixed field under a group action. #

This is the basis of the Fundamental Theorem of Galois Theory. Given a (finite) group G that acts on a field F, we define FixedPoints.subfield G F, the subfield consisting of elements of F fixed_points by every element of G.

This subfield is then normal and separable, and in addition if G acts faithfully on F then finrank (FixedPoints.subfield G F) F = Fintype.card G.

Main Definitions #

def FixedBy.subfield {M : Type u} [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] (m : M) :

The subfield of F fixed by the field endomorphism m.

Equations
    Instances For
      @[simp]
      theorem FixedBy.subfield_mem_iff {M : Type u} [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] (m : M) (x : F) :
      x subfield F m m x = x
      def FixedBy.intermediateField {M : Type u} [Monoid M] (K : Type u_1) (F : Type v) [Field F] [MulSemiringAction M F] (m : M) [Field K] [Algebra K F] [SMulCommClass M K F] :

      The intermediate field between K and F fixed by the field endomorphism m.

      Equations
        Instances For
          @[simp]
          theorem FixedBy.intermediateField_mem_iff {M : Type u} [Monoid M] (K : Type u_1) (F : Type v) [Field F] [MulSemiringAction M F] (m : M) [Field K] [Algebra K F] [SMulCommClass M K F] (x : F) :
          x intermediateField K F m m x = x
          class IsInvariantSubfield (M : Type u) [Monoid M] {F : Type v} [Field F] [MulSemiringAction M F] (S : Subfield F) :

          A typeclass for subrings invariant under a MulSemiringAction.

          • smul_mem (m : M) {x : F} : x Sm x S
          Instances
            def FixedPoints.subfield (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] :

            The subfield of fixed points by a monoid action.

            Equations
              Instances For
                @[simp]
                theorem FixedPoints.smul (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] (m : M) (x : (subfield M F)) :
                m x = x
                @[simp]
                theorem FixedPoints.smul_polynomial (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] (m : M) (p : Polynomial (subfield M F)) :
                m p = p
                def FixedPoints.minpoly (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :

                minpoly G F x is the minimal polynomial of (x : F) over FixedPoints.subfield G F.

                Equations
                  Instances For
                    theorem FixedPoints.minpoly.monic (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
                    (minpoly G F x).Monic
                    theorem FixedPoints.minpoly.ne_one (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
                    minpoly G F x 1
                    theorem FixedPoints.minpoly.of_eval₂ (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) (f : Polynomial (subfield G F)) (hf : Polynomial.eval₂ (subfield G F).subtype x f = 0) :
                    minpoly G F x f
                    theorem FixedPoints.minpoly.irreducible_aux (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) (f g : Polynomial (subfield G F)) (hf : f.Monic) (hg : g.Monic) (hfg : f * g = minpoly G F x) :
                    f = 1 g = 1
                    theorem FixedPoints.isIntegral (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Finite G] (x : F) :
                    IsIntegral (↥(subfield G F)) x
                    theorem FixedPoints.minpoly_eq_minpoly (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
                    minpoly G F x = _root_.minpoly (↥(subfield G F)) x
                    instance FixedPoints.normal (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Finite G] :
                    Normal (↥(subfield G F)) F
                    theorem cardinalMk_algHom (K : Type u) (V : Type v) (W : Type w) [Field K] [Ring V] [Algebra K V] [FiniteDimensional K V] [Field W] [Algebra K W] :
                    noncomputable instance AlgEquiv.fintype (K : Type u) (V : Type v) [Field K] [Field V] [Algebra K V] [FiniteDimensional K V] :
                    Fintype Gal(V/K)
                    Equations
                      theorem AlgEquiv.card_le {F : Type u_2} {K : Type u_3} [Field F] [Field K] [Algebra F K] [FiniteDimensional F K] :
                      theorem FixedPoints.finrank_eq_card (G : Type u_2) (F : Type u_3) [Group G] [Field F] [MulSemiringAction G F] [Fintype G] [FaithfulSMul G F] :

                      Let $F$ be a field. Let $G$ be a finite group acting faithfully on $F$. Then $[F : F^G] = |G|$.

                      def FixedPoints.toAlgHomEquiv (G : Type u_2) (F : Type u_3) [Group G] [Field F] [MulSemiringAction G F] [Finite G] [FaithfulSMul G F] :
                      G (F →ₐ[(subfield G F)] F)

                      Bijection between G and algebra endomorphisms of F that fix the fixed points.

                      Equations
                        Instances For
                          def FixedPoints.toAlgAutMulEquiv (G : Type u_2) (F : Type u_3) [Group G] [Field F] [MulSemiringAction G F] [Finite G] [FaithfulSMul G F] :
                          G ≃* Gal(F/(subfield G F))

                          Bijection between G and algebra automorphisms of F that fix the fixed points.

                          Equations
                            Instances For