Documentation

Mathlib.FieldTheory.IntermediateField.Basic

Intermediate fields #

Let L / K be a field extension, given as an instance Algebra K L. This file defines the type of fields in between K and L, IntermediateField K L. An IntermediateField K L is a subfield of L which contains (the image of) K, i.e. it is a Subfield L and a Subalgebra K L.

Main definitions #

Implementation notes #

Intermediate fields are defined with a structure extending Subfield and Subalgebra. A Subalgebra is closed under all operations except โปยน,

Tags #

intermediate field, field extension

structure IntermediateField (K : Type u_1) (L : Type u_2) [Field K] [Field L] [Algebra K L] extends Subalgebra K L :
Type u_2

S : IntermediateField K L is a subset of L such that there is a field tower L / S / K.

Instances For
    instance IntermediateField.instSetLike {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] :
    Equations
      theorem IntermediateField.neg_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x โˆˆ S) :
      def IntermediateField.toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :

      Reinterpret an IntermediateField as a Subfield.

      Equations
        Instances For
          theorem IntermediateField.ext {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S T : IntermediateField K L} (h : โˆ€ (x : L), x โˆˆ S โ†” x โˆˆ T) :
          S = T

          Two intermediate fields are equal if they have the same elements.

          theorem IntermediateField.ext_iff {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S T : IntermediateField K L} :
          S = T โ†” โˆ€ (x : L), x โˆˆ S โ†” x โˆˆ T
          @[simp]
          theorem IntermediateField.coe_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          โ†‘S.toSubalgebra = โ†‘S
          @[simp]
          theorem IntermediateField.coe_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          โ†‘S.toSubfield = โ†‘S
          @[simp]
          theorem IntermediateField.coe_type_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          โ†ฅS.toSubalgebra = โ†ฅS
          @[simp]
          theorem IntermediateField.coe_type_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          โ†ฅS.toSubfield = โ†ฅS
          @[simp]
          theorem IntermediateField.mem_mk {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : Subsemiring L) (hK : โˆ€ (x : K), (algebraMap K L) x โˆˆ s) (hi : โˆ€ x โˆˆ { toSubsemiring := s, algebraMap_mem' := hK }.carrier, xโปยน โˆˆ { toSubsemiring := s, algebraMap_mem' := hK }.carrier) (x : L) :
          x โˆˆ { toSubsemiring := s, algebraMap_mem' := hK, inv_mem' := hi } โ†” x โˆˆ s
          @[simp]
          theorem IntermediateField.mem_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : IntermediateField K L) (x : L) :
          @[simp]
          theorem IntermediateField.mem_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : IntermediateField K L) (x : L) :
          def IntermediateField.copy {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = โ†‘S) :

          Copy of an intermediate field with a new carrier equal to the old one. Useful to fix definitional equalities.

          Equations
            Instances For
              @[simp]
              theorem IntermediateField.coe_copy {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = โ†‘S) :
              โ†‘(S.copy s hs) = s
              theorem IntermediateField.copy_eq {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = โ†‘S) :
              S.copy s hs = S

              Lemmas inherited from more general structures #

              The declarations in this section derive from the fact that an IntermediateField is also a subalgebra or subfield. Their use should be replaceable with the corresponding lemma from a subobject class.

              theorem IntermediateField.algebraMap_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : K) :

              An intermediate field contains the image of the smaller field.

              theorem IntermediateField.smul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {y : L} :
              y โˆˆ S โ†’ โˆ€ {x : K}, x โ€ข y โˆˆ S

              An intermediate field is closed under scalar multiplication.

              theorem IntermediateField.one_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :

              An intermediate field contains the ring's 1.

              theorem IntermediateField.zero_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :

              An intermediate field contains the ring's 0.

              theorem IntermediateField.mul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x โˆˆ S โ†’ y โˆˆ S โ†’ x * y โˆˆ S

              An intermediate field is closed under multiplication.

              theorem IntermediateField.add_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x โˆˆ S โ†’ y โˆˆ S โ†’ x + y โˆˆ S

              An intermediate field is closed under addition.

              theorem IntermediateField.sub_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x โˆˆ S โ†’ y โˆˆ S โ†’ x - y โˆˆ S

              An intermediate field is closed under subtraction.

              theorem IntermediateField.inv_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} :

              An intermediate field is closed under inverses.

              theorem IntermediateField.div_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x โˆˆ S โ†’ y โˆˆ S โ†’ x / y โˆˆ S

              An intermediate field is closed under division.

              theorem IntermediateField.list_prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {l : List L} :
              (โˆ€ x โˆˆ l, x โˆˆ S) โ†’ l.prod โˆˆ S

              Product of a list of elements in an intermediate field is in the intermediate field.

              theorem IntermediateField.list_sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {l : List L} :
              (โˆ€ x โˆˆ l, x โˆˆ S) โ†’ l.sum โˆˆ S

              Sum of a list of elements in an intermediate field is in the intermediate field.

              theorem IntermediateField.multiset_prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (m : Multiset L) :
              (โˆ€ a โˆˆ m, a โˆˆ S) โ†’ m.prod โˆˆ S

              Product of a multiset of elements in an intermediate field is in the intermediate field.

              theorem IntermediateField.multiset_sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (m : Multiset L) :
              (โˆ€ a โˆˆ m, a โˆˆ S) โ†’ m.sum โˆˆ S

              Sum of a multiset of elements in an IntermediateField is in the IntermediateField.

              theorem IntermediateField.prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ฮน : Type u_4} {t : Finset ฮน} {f : ฮน โ†’ L} (h : โˆ€ c โˆˆ t, f c โˆˆ S) :
              โˆ i โˆˆ t, f i โˆˆ S

              Product of elements of an intermediate field indexed by a Finset is in the intermediate field.

              theorem IntermediateField.sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ฮน : Type u_4} {t : Finset ฮน} {f : ฮน โ†’ L} (h : โˆ€ c โˆˆ t, f c โˆˆ S) :
              โˆ‘ i โˆˆ t, f i โˆˆ S

              Sum of elements in an IntermediateField indexed by a Finset is in the IntermediateField.

              theorem IntermediateField.pow_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x โˆˆ S) (n : โ„ค) :
              x ^ n โˆˆ S
              theorem IntermediateField.zsmul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x โˆˆ S) (n : โ„ค) :
              theorem IntermediateField.intCast_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (n : โ„ค) :
              โ†‘n โˆˆ S
              theorem IntermediateField.coe_add {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x y : โ†ฅS) :
              โ†‘(x + y) = โ†‘x + โ†‘y
              theorem IntermediateField.coe_neg {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : โ†ฅS) :
              โ†‘(-x) = -โ†‘x
              theorem IntermediateField.coe_mul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x y : โ†ฅS) :
              โ†‘(x * y) = โ†‘x * โ†‘y
              theorem IntermediateField.coe_inv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : โ†ฅS) :
              โ†‘xโปยน = (โ†‘x)โปยน
              theorem IntermediateField.coe_zero {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
              โ†‘0 = 0
              theorem IntermediateField.coe_one {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
              โ†‘1 = 1
              theorem IntermediateField.coe_pow {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : โ†ฅS) (n : โ„•) :
              โ†‘(x ^ n) = โ†‘x ^ n
              theorem IntermediateField.natCast_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (n : โ„•) :
              โ†‘n โˆˆ S
              def Subalgebra.toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (inv_mem : โˆ€ x โˆˆ S, xโปยน โˆˆ S) :

              Turn a subalgebra closed under inverses into an intermediate field.

              Equations
                Instances For
                  @[simp]
                  theorem toSubalgebra_toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (inv_mem : โˆ€ x โˆˆ S, xโปยน โˆˆ S) :
                  @[simp]
                  theorem toIntermediateField_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                  S.toIntermediateField โ‹ฏ = S
                  def Subalgebra.toIntermediateField' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (hS : IsField โ†ฅS) :

                  Turn a subalgebra satisfying IsField into an intermediate field.

                  Equations
                    Instances For
                      @[simp]
                      theorem toSubalgebra_toIntermediateField' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (hS : IsField โ†ฅS) :
                      @[simp]
                      theorem toIntermediateField'_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                      S.toIntermediateField' โ‹ฏ = S
                      def Subfield.toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subfield L) (algebra_map_mem : โˆ€ (x : K), (algebraMap K L) x โˆˆ S) :

                      Turn a subfield of L containing the image of K into an intermediate field.

                      Equations
                        Instances For
                          @[simp]
                          theorem Subfield.toIntermediateField_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subfield L) (algebra_map_mem : โˆ€ (x : K), (algebraMap K L) x โˆˆ S) :
                          (S.toIntermediateField algebra_map_mem).toSubfield = S
                          @[simp]
                          theorem Subfield.coe_toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subfield L) (algebra_map_mem : โˆ€ (x : K), (algebraMap K L) x โˆˆ S) :
                          โ†‘(S.toIntermediateField algebra_map_mem) = โ†‘S
                          instance IntermediateField.toField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                          Field โ†ฅS

                          An intermediate field inherits a field structure.

                          Equations
                            theorem IntermediateField.coe_sum {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ฮน : Type u_4} [Fintype ฮน] (f : ฮน โ†’ โ†ฅS) :
                            โ†‘(โˆ‘ i : ฮน, f i) = โˆ‘ i : ฮน, โ†‘(f i)
                            theorem IntermediateField.coe_prod {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ฮน : Type u_4} [Fintype ฮน] (f : ฮน โ†’ โ†ฅS) :
                            โ†‘(โˆ i : ฮน, f i) = โˆ i : ฮน, โ†‘(f i)

                            IntermediateFields inherit structure from their Subfield coercions.

                            instance IntermediateField.instSMulSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] (F : IntermediateField K L) :
                            SMul (โ†ฅF) X

                            The action by an intermediate field is the action by the underlying field.

                            Equations
                              theorem IntermediateField.smul_def {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] {F : IntermediateField K L} (g : โ†ฅF) (m : X) :
                              g โ€ข m = โ†‘g โ€ข m
                              instance IntermediateField.smulCommClass_left {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_5} {Y : Type u_4} [SMul L Y] [SMul X Y] [SMulCommClass L X Y] (F : IntermediateField K L) :
                              SMulCommClass (โ†ฅF) X Y
                              instance IntermediateField.smulCommClass_right {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} {Y : Type u_5} [SMul X Y] [SMul L Y] [SMulCommClass X L Y] (F : IntermediateField K L) :
                              SMulCommClass X (โ†ฅF) Y
                              @[instance 900]
                              instance IntermediateField.instIsScalarTowerSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} {Y : Type u_5} [SMul X Y] [SMul L X] [SMul L Y] [IsScalarTower L X Y] (F : IntermediateField K L) :
                              IsScalarTower (โ†ฅF) X Y

                              Note that this provides IsScalarTower F K K which is needed by smul_mul_assoc.

                              instance IntermediateField.instFaithfulSMulSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] [FaithfulSMul L X] (F : IntermediateField K L) :
                              FaithfulSMul (โ†ฅF) X
                              instance IntermediateField.instMulActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [MulAction L X] (F : IntermediateField K L) :
                              MulAction (โ†ฅF) X

                              The action by an intermediate field is the action by the underlying field.

                              Equations
                                instance IntermediateField.instDistribMulActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [AddMonoid X] [DistribMulAction L X] (F : IntermediateField K L) :
                                DistribMulAction (โ†ฅF) X

                                The action by an intermediate field is the action by the underlying field.

                                Equations
                                  instance IntermediateField.instMulDistribMulActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Monoid X] [MulDistribMulAction L X] (F : IntermediateField K L) :
                                  MulDistribMulAction (โ†ฅF) X

                                  The action by an intermediate field is the action by the underlying field.

                                  Equations
                                    instance IntermediateField.instSMulWithZeroSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Zero X] [SMulWithZero L X] (F : IntermediateField K L) :
                                    SMulWithZero (โ†ฅF) X

                                    The action by an intermediate field is the action by the underlying field.

                                    Equations
                                      instance IntermediateField.instMulActionWithZeroSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Zero X] [MulActionWithZero L X] (F : IntermediateField K L) :
                                      MulActionWithZero (โ†ฅF) X

                                      The action by an intermediate field is the action by the underlying field.

                                      Equations
                                        instance IntermediateField.instModuleSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [AddCommMonoid X] [Module L X] (F : IntermediateField K L) :
                                        Module (โ†ฅF) X

                                        The action by an intermediate field is the action by the underlying field.

                                        Equations
                                          instance IntermediateField.instMulSemiringActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Semiring X] [MulSemiringAction L X] (F : IntermediateField K L) :
                                          MulSemiringAction (โ†ฅF) X

                                          The action by an intermediate field is the action by the underlying field.

                                          Equations

                                            IntermediateFields inherit structure from their Subalgebra coercions.

                                            instance IntermediateField.toAlgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                            Algebra (โ†ฅS) L
                                            Equations
                                              instance IntermediateField.module' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [SMul R K] [Module R L] [IsScalarTower R K L] :
                                              Module R โ†ฅS
                                              Equations
                                                instance IntermediateField.algebra' {R' : Type u_4} {K : Type u_5} {L : Type u_6} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) [CommSemiring R'] [SMul R' K] [Algebra R' L] [IsScalarTower R' K L] :
                                                Algebra R' โ†ฅS
                                                Equations
                                                  instance IntermediateField.isScalarTower {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [SMul R K] [Module R L] [IsScalarTower R K L] :
                                                  IsScalarTower R K โ†ฅS
                                                  @[simp]
                                                  theorem IntermediateField.coe_smul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [SMul R K] [SMul R L] [IsScalarTower R K L] (r : R) (x : โ†ฅS) :
                                                  โ†‘(r โ€ข x) = r โ€ข โ†‘x
                                                  @[simp]
                                                  theorem IntermediateField.algebraMap_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : โ†ฅS) :
                                                  (algebraMap (โ†ฅS) L) x = โ†‘x
                                                  @[simp]
                                                  theorem IntermediateField.coe_algebraMap_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : K) :
                                                  โ†‘((algebraMap K โ†ฅS) x) = (algebraMap K L) x
                                                  instance IntermediateField.isScalarTower_bot {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [Algebra L R] :
                                                  IsScalarTower (โ†ฅS) L R
                                                  instance IntermediateField.isScalarTower_mid {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [Algebra L R] [Algebra K R] [IsScalarTower K L R] :
                                                  IsScalarTower K (โ†ฅS) R
                                                  instance IntermediateField.isScalarTower_mid' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                  IsScalarTower K (โ†ฅS) L

                                                  Specialize isScalarTower_mid to the common case where the top field is L.

                                                  instance IntermediateField.instAlgebraSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {E : Type u_4} [Semiring E] [Algebra L E] :
                                                  Algebra (โ†ฅS) E
                                                  Equations
                                                    instance IntermediateField.instAlgebraSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (โ†ฅS) E) :
                                                    Algebra โ†ฅS โ†ฅT
                                                    Equations
                                                      instance IntermediateField.instModuleSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (โ†ฅS) E) :
                                                      Module โ†ฅS โ†ฅT
                                                      Equations
                                                        instance IntermediateField.instSMulSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (โ†ฅS) E) :
                                                        SMul โ†ฅS โ†ฅT
                                                        Equations
                                                          instance IntermediateField.instIsScalarTowerSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (โ†ฅS) E) [Algebra K E] [IsScalarTower K L E] :
                                                          IsScalarTower K โ†ฅS โ†ฅT
                                                          def IntermediateField.comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') (S : IntermediateField K L') :

                                                          Given f : L โ†’โ‚[K] L', S.comap f is the intermediate field between K and L such that f x โˆˆ S โ†” x โˆˆ S.comap f.

                                                          Equations
                                                            Instances For
                                                              def IntermediateField.map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') (S : IntermediateField K L) :

                                                              Given f : L โ†’โ‚[K] L', S.map f is the intermediate field between K and L' such that x โˆˆ S โ†” f x โˆˆ S.map f.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem IntermediateField.coe_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L โ†’โ‚[K] L') :
                                                                  โ†‘(map f S) = โ‡‘f '' โ†‘S
                                                                  @[simp]
                                                                  theorem IntermediateField.toSubalgebra_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L โ†’โ‚[K] L') :
                                                                  @[simp]
                                                                  theorem IntermediateField.toSubfield_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L โ†’โ‚[K] L') :
                                                                  theorem IntermediateField.map_id {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                  map (AlgHom.id K L) S = S

                                                                  Mapping intermediate fields along the identity does not change them.

                                                                  theorem IntermediateField.map_map {K : Type u_4} {Lโ‚ : Type u_5} {Lโ‚‚ : Type u_6} {Lโ‚ƒ : Type u_7} [Field K] [Field Lโ‚] [Algebra K Lโ‚] [Field Lโ‚‚] [Algebra K Lโ‚‚] [Field Lโ‚ƒ] [Algebra K Lโ‚ƒ] (E : IntermediateField K Lโ‚) (f : Lโ‚ โ†’โ‚[K] Lโ‚‚) (g : Lโ‚‚ โ†’โ‚[K] Lโ‚ƒ) :
                                                                  map g (map f E) = map (g.comp f) E
                                                                  theorem IntermediateField.map_mono {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') {S T : IntermediateField K L} (h : S โ‰ค T) :
                                                                  map f S โ‰ค map f T
                                                                  theorem IntermediateField.map_le_iff_le_comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L โ†’โ‚[K] L'} {s : IntermediateField K L} {t : IntermediateField K L'} :
                                                                  theorem IntermediateField.gc_map_comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') :
                                                                  def IntermediateField.intermediateFieldMap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L โ‰ƒโ‚[K] L') (E : IntermediateField K L) :
                                                                  โ†ฅE โ‰ƒโ‚[K] โ†ฅ(map (โ†‘e) E)

                                                                  Given an equivalence e : L โ‰ƒโ‚[K] L' of K-field extensions and an intermediate field E of L/K, intermediateFieldMap e E is the induced equivalence between E and E.map e.

                                                                  Equations
                                                                    Instances For
                                                                      theorem IntermediateField.intermediateFieldMap_apply_coe {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L โ‰ƒโ‚[K] L') (E : IntermediateField K L) (a : โ†ฅE) :
                                                                      โ†‘((intermediateFieldMap e E) a) = e โ†‘a
                                                                      theorem IntermediateField.intermediateFieldMap_symm_apply_coe {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L โ‰ƒโ‚[K] L') (E : IntermediateField K L) (a : โ†ฅ(map (โ†‘e) E)) :
                                                                      โ†‘((intermediateFieldMap e E).symm a) = e.symm โ†‘a
                                                                      def AlgHom.fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') :

                                                                      The range of an algebra homomorphism, as an intermediate field.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem AlgHom.fieldRange_toSubalgebra {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') :
                                                                          @[simp]
                                                                          theorem AlgHom.coe_fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') :
                                                                          โ†‘f.fieldRange = Set.range โ‡‘f
                                                                          @[simp]
                                                                          theorem AlgHom.fieldRange_toSubfield {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') :
                                                                          @[simp]
                                                                          theorem AlgHom.mem_fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L โ†’โ‚[K] L'} {y : L'} :
                                                                          y โˆˆ f.fieldRange โ†” โˆƒ (x : L), f x = y
                                                                          def IntermediateField.val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                          โ†ฅS โ†’โ‚[K] L

                                                                          The embedding from an intermediate field of L / K to L.

                                                                          Equations
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem IntermediateField.coe_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                              โ‡‘S.val = Subtype.val
                                                                              @[simp]
                                                                              theorem IntermediateField.val_mk {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x โˆˆ S) :
                                                                              @[simp]
                                                                              theorem IntermediateField.fieldRange_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                              instance IntermediateField.AlgHom.inhabited {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                              Equations
                                                                                theorem IntermediateField.aeval_coe {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [CommSemiring R] [Algebra R K] [Algebra R L] [IsScalarTower R K L] (x : โ†ฅS) (P : Polynomial R) :
                                                                                (Polynomial.aeval โ†‘x) P = โ†‘((Polynomial.aeval x) P)
                                                                                def IntermediateField.inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E F : IntermediateField K L} (hEF : E โ‰ค F) :
                                                                                โ†ฅE โ†’โ‚[K] โ†ฅF

                                                                                The map E โ†’ F when E is an intermediate field contained in the intermediate field F.

                                                                                This is the intermediate field version of Subalgebra.inclusion.

                                                                                Equations
                                                                                  Instances For
                                                                                    @[simp]
                                                                                    theorem IntermediateField.inclusion_self {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} :
                                                                                    inclusion โ‹ฏ = AlgHom.id K โ†ฅE
                                                                                    @[simp]
                                                                                    theorem IntermediateField.inclusion_inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E F G : IntermediateField K L} (hEF : E โ‰ค F) (hFG : F โ‰ค G) (x : โ†ฅE) :
                                                                                    (inclusion hFG) ((inclusion hEF) x) = (inclusion โ‹ฏ) x
                                                                                    @[simp]
                                                                                    theorem IntermediateField.coe_inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E F : IntermediateField K L} (hEF : E โ‰ค F) (e : โ†ฅE) :
                                                                                    โ†‘((inclusion hEF) e) = โ†‘e
                                                                                    theorem IntermediateField.map_injective {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โ†’โ‚[K] L') :
                                                                                    theorem IntermediateField.set_range_subset {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                                    Set.range โ‡‘(algebraMap K L) โІ โ†‘S
                                                                                    def IntermediateField.lift {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E : IntermediateField K โ†ฅF) :

                                                                                    Lift an intermediate field of an intermediate field.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem IntermediateField.lift_inj {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E E' : IntermediateField K โ†ฅF) :
                                                                                        lift E = lift E' โ†” E = E'
                                                                                        theorem IntermediateField.lift_le {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E : IntermediateField K โ†ฅF) :
                                                                                        theorem IntermediateField.mem_lift {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K โ†ฅF} (x : โ†ฅF) :
                                                                                        โ†‘x โˆˆ lift E โ†” x โˆˆ E
                                                                                        def IntermediateField.liftAlgEquiv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (F : IntermediateField K โ†ฅE) :
                                                                                        โ†ฅF โ‰ƒโ‚[K] โ†ฅ(lift F)

                                                                                        The algEquiv between an intermediate field and its lift.

                                                                                        Equations
                                                                                          Instances For
                                                                                            theorem IntermediateField.liftAlgEquiv_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (F : IntermediateField K โ†ฅE) (x : โ†ฅF) :
                                                                                            โ†‘((liftAlgEquiv F) x) = โ†‘โ†‘x
                                                                                            def IntermediateField.restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] (E : IntermediateField L' L) :

                                                                                            Given a tower L / โ†ฅE / L' / K of field extensions, where E is an L'-intermediate field of L, reinterpret E as a K-intermediate field of L.

                                                                                            Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem IntermediateField.coe_restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} :
                                                                                                โ†‘(restrictScalars K E) = โ†‘E
                                                                                                @[simp]
                                                                                                theorem IntermediateField.restrictScalars_toSubfield (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} :
                                                                                                @[simp]
                                                                                                theorem IntermediateField.mem_restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} {x : L} :
                                                                                                @[simp]
                                                                                                theorem IntermediateField.restrictScalars_inj (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E E' : IntermediateField L' L} :
                                                                                                def IntermediateField.equivOfEq {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T : IntermediateField F E} (h : S = T) :
                                                                                                โ†ฅS โ‰ƒโ‚[F] โ†ฅT

                                                                                                Construct an algebra isomorphism from an equality of intermediate fields.

                                                                                                Equations
                                                                                                  Instances For
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_apply {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T : IntermediateField F E} (h : S = T) (x : โ†ฅS.toSubalgebra) :
                                                                                                    (equivOfEq h) x = โŸจโ†‘x, โ‹ฏโŸฉ
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_symm {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T : IntermediateField F E} (h : S = T) :
                                                                                                    (equivOfEq h).symm = equivOfEq โ‹ฏ
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_rfl {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] (S : IntermediateField F E) :
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_trans {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T U : IntermediateField F E} (hST : S = T) (hTU : T = U) :
                                                                                                    (equivOfEq hST).trans (equivOfEq hTU) = equivOfEq โ‹ฏ
                                                                                                    theorem IntermediateField.fieldRange_comp_val {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E โ†’โ‚[F] K) :
                                                                                                    (f.comp L.val).fieldRange = map f L
                                                                                                    noncomputable def IntermediateField.equivMap {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E โ†’โ‚[F] K) :
                                                                                                    โ†ฅL โ‰ƒโ‚[F] โ†ฅ(map f L)

                                                                                                    An intermediate field is isomorphic to its image under an AlgHom (which is automatically injective).

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem IntermediateField.coe_equivMap_apply {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E โ†’โ‚[F] K) (x : โ†ฅL) :
                                                                                                        โ†‘((L.equivMap f) x) = f โ†‘x
                                                                                                        def Subfield.extendScalars {L : Type u_2} [Field L] {F E : Subfield L} (h : F โ‰ค E) :
                                                                                                        IntermediateField (โ†ฅF) L

                                                                                                        If F โ‰ค E are two subfields of L, then E is also an intermediate field of L / F. It can be viewed as an inverse to IntermediateField.toSubfield.

                                                                                                        Equations
                                                                                                          Instances For
                                                                                                            @[simp]
                                                                                                            theorem Subfield.coe_extendScalars {L : Type u_2} [Field L] {F E : Subfield L} (h : F โ‰ค E) :
                                                                                                            โ†‘(extendScalars h) = โ†‘E
                                                                                                            @[simp]
                                                                                                            theorem Subfield.mem_extendScalars {L : Type u_2} [Field L] {F E : Subfield L} (h : F โ‰ค E) {x : L} :

                                                                                                            Subfield.extendScalars.orderIso bundles Subfield.extendScalars into an order isomorphism from { E : Subfield L // F โ‰ค E } to IntermediateField F L. Its inverse is IntermediateField.toSubfield.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem Subfield.extendScalars.orderIso_apply {L : Type u_2} [Field L] (F : Subfield L) (E : { E : Subfield L // F โ‰ค E }) :
                                                                                                                (orderIso F) E = extendScalars โ‹ฏ
                                                                                                                def IntermediateField.extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F โ‰ค E) :
                                                                                                                IntermediateField (โ†ฅF) L

                                                                                                                If F โ‰ค E are two intermediate fields of L / K, then E is also an intermediate field of L / F. It can be viewed as an inverse to IntermediateField.restrictScalars.

                                                                                                                Equations
                                                                                                                  Instances For
                                                                                                                    @[simp]
                                                                                                                    theorem IntermediateField.coe_extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F โ‰ค E) :
                                                                                                                    โ†‘(extendScalars h) = โ†‘E
                                                                                                                    @[simp]
                                                                                                                    theorem IntermediateField.mem_extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F โ‰ค E) {x : L} :

                                                                                                                    IntermediateField.extendScalars.orderIso bundles IntermediateField.extendScalars into an order isomorphism from { E : IntermediateField K L // F โ‰ค E } to IntermediateField F L. Its inverse is IntermediateField.restrictScalars.

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        def IntermediateField.restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F โ‰ค E) :
                                                                                                                        IntermediateField K โ†ฅE

                                                                                                                        If F โ‰ค E are two intermediate fields of L / K, then F is also an intermediate field of E / K. It is an inverse of IntermediateField.lift, and can be viewed as a dual to IntermediateField.extendScalars.

                                                                                                                        Equations
                                                                                                                          Instances For
                                                                                                                            theorem IntermediateField.mem_restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F โ‰ค E) (x : โ†ฅE) :
                                                                                                                            @[simp]
                                                                                                                            theorem IntermediateField.lift_restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F โ‰ค E) :
                                                                                                                            noncomputable def IntermediateField.restrict_algEquiv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F โ‰ค E) :
                                                                                                                            โ†ฅF โ‰ƒโ‚[K] โ†ฅ(restrict h)

                                                                                                                            F is equivalent to F as an intermediate field of E / K.

                                                                                                                            Equations
                                                                                                                              Instances For