Documentation Verification Report

Basic

πŸ“ Source: Mathlib/FieldTheory/IntermediateField/Basic.lean

Statistics

MetricCount
DefinitionsfieldRange, inhabited, algebra', comap, copy, equivMap, equivOfEq, extendScalars, orderIso, inclusion, instAlgebraSubtypeMem, instAlgebraSubtypeMem_1, instDistribMulActionSubtypeMem, instModuleSubtypeMem, instModuleSubtypeMem_1, instMulActionSubtypeMem, instMulActionWithZeroSubtypeMem, instMulDistribMulActionSubtypeMem, instMulSemiringActionSubtypeMem, instPartialOrder, instSMulSubtypeMem, instSMulSubtypeMem_1, instSMulWithZeroSubtypeMem, instSetLike, intermediateFieldMap, liftAlgEquiv, map, module', restrict, restrictScalars, restrict_algEquiv, toAlgebra, toField, toSubalgebra, toSubfield, val, toIntermediateField, toIntermediateField', extendScalars, orderIso, toIntermediateField
41
Theoremscoe_fieldRange, fieldRange_toSubalgebra, fieldRange_toSubfield, mem_fieldRange, add_mem, aeval_coe, algebraMap_apply, algebraMap_mem, coe_add, coe_algebraMap_apply, coe_copy, coe_equivMap_apply, coe_extendScalars, coe_inclusion, coe_inv, coe_map, coe_mul, coe_neg, coe_one, coe_pow, coe_prod, coe_restrictScalars, coe_smul, coe_sum, coe_toSubalgebra, coe_toSubfield, coe_type_toSubalgebra, coe_type_toSubfield, coe_val, coe_zero, copy_eq, div_mem, equivOfEq_apply, equivOfEq_rfl, equivOfEq_symm, equivOfEq_trans, ext, ext_iff, orderIso_apply, orderIso_symm_apply_coe, extendScalars_injective, extendScalars_le_extendScalars_iff, extendScalars_le_iff, extendScalars_restrictScalars, extendScalars_toSubfield, fieldRange_comp_val, fieldRange_le, fieldRange_val, gc_map_comap, inclusion_inclusion, inclusion_injective, inclusion_self, instFaithfulSMulSubtypeMem, instIsScalarTowerSubtypeMem, instIsScalarTowerSubtypeMem_1, instSMulMemClass, instSubfieldClass, intCast_mem, intermediateFieldMap_apply_coe, intermediateFieldMap_symm_apply_coe, inv_mem, inv_mem', isScalarTower, isScalarTower_bot, isScalarTower_mid, isScalarTower_mid', le_extendScalars_iff, liftAlgEquiv_apply, lift_inj, lift_injective, lift_le, lift_restrict, list_prod_mem, list_sum_mem, map_id, map_injective, map_le_iff_le_comap, map_map, map_mono, mem_carrier, mem_extendScalars, mem_lift, mem_mk, mem_restrict, mem_restrictScalars, mem_toSubalgebra, mem_toSubfield, mul_mem, multiset_prod_mem, multiset_sum_mem, natCast_mem, neg_mem, one_mem, pow_mem, prod_mem, range_val, restrictScalars_inj, restrictScalars_injective, restrictScalars_toSubalgebra, restrictScalars_toSubfield, set_range_subset, smulCommClass_left, smulCommClass_right, smul_def, smul_mem, sub_mem, sum_mem, toSubalgebra_inj, toSubalgebra_injective, toSubalgebra_le_toSubalgebra, toSubalgebra_lt_toSubalgebra, toSubalgebra_map, toSubalgebra_strictMono, toSubfield_inj, toSubfield_injective, toSubfield_map, val_mk, zero_mem, zsmul_mem, coe_extendScalars, coe_toIntermediateField, orderIso_apply, orderIso_symm_apply_coe, extendScalars_injective, extendScalars_le_extendScalars_iff, extendScalars_le_iff, extendScalars_toSubfield, le_extendScalars_iff, mem_extendScalars, toIntermediateField_toSubfield, toIntermediateField'_toSubalgebra, toIntermediateField_toSubalgebra, toSubalgebra_toIntermediateField, toSubalgebra_toIntermediateField'
134
Total175

AlgHom

Definitions

NameCategoryTheorems
fieldRange πŸ“–CompOp
31 mathmath: normalClosure_le_iff, IntermediateField.relrank_comap_comap_eq_relrank_inf, fieldRange_eq_map, IntermediateField.LinearDisjoint.of_isField', IsFractionRing.algHom_fieldRange_eq_of_comp_eq_of_range_eq, fieldRange_toSubalgebra, IntermediateField.fieldRange_comp_val, normalClosure.restrictScalars_eq, IsFractionRing.algHom_fieldRange_eq_of_comp_eq, IntermediateField.normal_iff_forall_fieldRange_le, normalClosure_def, IntermediateField.linearDisjoint_comm', map_fieldRange, fieldRange_toSubfield, IsFractionRing.liftAlgHom_fieldRange_eq_of_range_eq, IntermediateField.normal_iff_forall_fieldRange_eq, IntermediateField.map_comap_eq, coe_fieldRange, fieldRange_eq_top, mem_fieldRange, IntermediateField.finrank_comap, IntermediateField.LinearDisjoint.exists_field_of_isDomain, fieldRange_le_normalClosure, AlgEquiv.fieldRange_eq_top, IntermediateField.lift_relrank_comap_comap_eq_lift_relrank_inf, IsFractionRing.liftAlgHom_fieldRange, IntermediateField.fieldRange_val, IntermediateField.rank_comap, IntermediateField.relfinrank_comap_comap_eq_relfinrank_inf, IntermediateField.lift_rank_comap, fieldRange_of_normal

Theorems

NameKindAssumesProvesValidatesDepends On
coe_fieldRange πŸ“–mathematicalβ€”SetLike.coe
IntermediateField
IntermediateField.instSetLike
fieldRange
Set.range
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
funLike
β€”β€”
fieldRange_toSubalgebra πŸ“–mathematicalβ€”IntermediateField.toSubalgebra
fieldRange
range
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”β€”
fieldRange_toSubfield πŸ“–mathematicalβ€”IntermediateField.toSubfield
fieldRange
RingHom.fieldRange
Field.toDivisionRing
RingHomClass.toRingHom
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
algHomClass
β€”β€”
mem_fieldRange πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
fieldRange
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
funLike
β€”β€”

IntermediateField

Definitions

NameCategoryTheorems
algebra' πŸ“–CompOp
244 mathmath: AdjoinSimple.trace_gen_eq_sum_roots, finInsepDegree_top, Field.Emb.Cardinal.equivLim_coherence, InfiniteGalois.normal_iff_isGalois, exists_algHom_adjoin_of_splits, aeval_gen_minpoly, LinearDisjoint.iff_inf_eq_bot, normal_inf, coe_algebraMap_over_bot, instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, minpoly.algEquiv_apply, isScalarTower_mid', adjoinRootEquivAdjoin_symm_apply_gen, isCyclotomicExtension_singleton_iff_eq_adjoin, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField, lift_insepDegree_bot', Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, InfiniteGalois.isOpen_and_normal_iff_finite_and_isGalois, Field.Emb.Cardinal.filtration_succ, InfiniteGalois.normalAutEquivQuotient_apply, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMax, isAlgebraic_tower_bot, botEquiv_symm, isGalois_iff_isGalois_top, FiniteGaloisIntermediateField.mem_fixingSubgroup_iff, exists_algHom_of_adjoin_splits, normal_iff_forall_map_eq, restrictScalars_normal, isScalarTower, Algebra.FormallySmooth.adjoin_of_algebraicIndependent, isPurelyInseparable_iff_fd_isPurelyInseparable, LinearDisjoint.of_isField', PowerBasis.equivAdjoinSimple_symm_aeval, InfiniteGalois.toAlgEquivAux_eq_proj_of_mem, lift_adjoin_simple, algebraicClosure.normalClosure_eq_self, AdjoinDouble.normal_algebraicClosure, algebraicClosure.isAlgebraic, IsGalois.normalClosure, isAlgebraic_iff, coe_inclusion, instIsAbelianGaloisSubtypeMemIntermediateFieldBot, minpoly_gen, aeval_coe, Field.Emb.Cardinal.succEquiv_coherence, finSepDegree_adjoin_simple_eq_finrank_iff, solvableByRad.isSolvable, linearDisjoint_comm, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, equivOfEq_symm, restrictRestrictAlgEquivMapHom_apply, fieldRange_comp_val, adjoin.powerBasis_gen, equivOfEq_rfl, normal_iff_normalClosure_le, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, adjoin_simple_adjoin_simple, restrictRestrictAlgEquivMapHom_surjective, AdjoinSimple.norm_gen_eq_one, range_val, isCyclotomicExtension_lcm_sup, linearDisjoint_iff', splits_iff_mem, Algebra.normalizedTrace_intermediateField, isNormalClosure_normalClosure, lift_top, insepDegree_bot', exists_algHom_adjoin_of_splits_of_aeval, AlgebraicIndependent.lift_reprField, isAlgebraic_adjoin, instIsLiouvilleSubtypeMemIntermediateField, PowerBasis.equivAdjoinSimple_aeval, isPurelyInseparable_tower_bot, le_separableClosure_iff, botContinuousSMul, eq_separableClosure_iff, normal_iff_forall_fieldRange_le, IsGalois.normalAutEquivQuotient_apply, trace_eq_trace_adjoin, coe_isIntegral_iff, InfiniteGalois.proj_adjoin_singleton_val, lift_inf, exists_algHom_of_splits, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin_1, PowerBasis.equivAdjoinSimple_gen, Field.Emb.Cardinal.equivSucc_coherence, restrictScalars_adjoin_eq_sup, FiniteGaloisIntermediateField.isGalois, Lifts.lt_iff, extendScalars_le_iff, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, Splits.algebraicClosure, PowerBasis.equivAdjoinSimple_symm_gen, coe_val, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable', restrictRestrictAlgEquivMapHom_injective, normal_iff_forall_map_le', normal_iff_forall_fieldRange_eq, InfiniteGalois.restrict_fixedField, sepDegree_bot, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure, finInsepDegree_bot', Algebra.norm_eq_norm_adjoin, isAlgebraic_adjoin_iff_isAlgebraic, restrictScalars_bot_eq_self, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable, mem_lift, isAlgebraic_adjoin_pair, adjoinRootEquivAdjoin_apply_root, normalClosureOperator_apply, finSepDegree_adjoin_simple_eq_natSepDegree, isPurelyInseparable_adjoin_iff_pow_mem, le_restrictScalars_separableClosure, instIsScalarTowerSubtypeMem_1, lift_injective, isSeparable_adjoin_simple_iff_isSeparable, AdjoinSimple.trace_gen_eq_zero, lift_sepDegree_bot', finSepDegree_adjoin_simple_le_finrank, card_algHom_adjoin_integral, LinearDisjoint.of_inf_eq_bot, AlgebraicIndependent.liftAlgHom_comp_reprField, inclusion_self, lift_bot, normalClosure_of_normal, algHomAdjoinIntegralEquiv_symm_apply_gen, le_extendScalars_iff, extendScalars.orderIso_symm_apply_coe, sepDegree_bot', inclusion_injective, Differential.instDifferentialAlgebraSubtypeMemIntermediateField, LinearDisjoint.bot_right, normal_iff_forall_map_le, separableClosure.isAlgebraic, spectralNorm.eq_of_normalClosure, spectralNorm.eq_of_normalClosure', separableClosure.isSepClosure, InfiniteGalois.toAlgEquivAux_eq_liftNormal, normalClosure_def'', AdjoinSimple.norm_gen_eq_prod_roots, isSeparable_tower_bot, minpoly_eq, isSplittingField_iff, topEquiv_symm_apply_coe, FiniteGaloisIntermediateField.adjoin_val, isAlgebraic_adjoin_simple, AdjoinSimple.normal_algebraicClosure, normal_iff_forall_map_eq', intermediateFieldMap_apply_coe, topEquiv_apply, exists_algHom_adjoin_of_splits', Algebra.normalizedTrace_def, AdjoinSimple.isIntegral_gen, Algebra.IsAlgebraic.isNormalClosure_normalClosure, isPurelyInseparable_bot, AlgebraicIndependent.aevalEquivField_apply_coe, LinearDisjoint.exists_field_of_isDomain, isSeparable_adjoin_pair_of_isSeparable, le_perfectClosure_iff, perfectClosure.isAlgebraic, isSeparable_sup, InfiniteGalois.finGaloisGroupFunctor_map_proj_eq_proj, InfiniteGalois.restrictNormalHom_continuous, IsGalois.of_separable_splitting_field_aux, coe_equivMap_apply, finInsepDegree_bot, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_exists_isPrimitiveRoot, krullTopology_mem_nhds_one_iff_of_normal, isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, separableClosure.isSeparable, botEquiv_def, le_algebraicClosure_iff, adjoin_adjoin_comm, finSepDegree_bot', val_mk, AlgEquiv.restrictNormalHom_apply, InfiniteGalois.mk_toAlgEquivAux, instIsAbelianGaloisSubtypeMemIntermediateField, adjoin_simple_comm, algebraicClosure.isAlgClosure, inclusion_inclusion, extendScalars_restrictScalars, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMin, InfiniteGalois.proj_of_le, lift_adjoin, LinearDisjoint.of_finrank_sup, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, lift_sup, normalClosure.normal, adjoin_adjoin_left, normalClosure_mono, solvableByRad.isIntegral, restrictNormalHom_ker, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin, insepDegree_bot, equivOfEq_apply, isAlgebraic_adjoin_iff_bot, fieldRange_val, liftAlgEquiv_apply, LinearDisjoint.of_basis_mul, insepDegree_top, separableClosure_le_separableClosure_iff, finSepDegree_top, normalClosure_le_iff_of_normal, AlgHom.fieldRange_of_normal, Lifts.eq_iff, normalClosure_map_eq, IsPrimitiveRoot.intermediateField_adjoin_isCyclotomicExtension, le_normalClosure, equivOfEq_trans, normalClosure_def', Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, mem_restrict, LinearDisjoint.isDomain, isGalois_bot, intermediateFieldMap_symm_apply_coe, FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, normal_sup, coe_algebraMap_apply, separableClosure.isGalois, isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, restrictScalars_adjoin, Lifts.le_iff, trace_adjoinSimpleGen, normal_iff_normalClosure_eq, isIntegral_iff, separableClosure.normalClosure_eq_self, adjoin.powerBasis_dim, IsGalois.of_fixedField_normal_subgroup, essFiniteType_iff, Field.Emb.cardinal_separableClosure, isPurelyInseparable_sup, splits_of_splits, isPurelyInseparable_adjoin_simple_iff_pow_mem, adjoin_rootSet_isSplittingField, nonempty_algHom_adjoin_of_splits, isScalarTower_mid, finSepDegree_bot, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_isSepClosed, LinearDisjoint.linearIndependent_left, perfectClosure.isPurelyInseparable, isSeparable_adjoin_iff_isSeparable, sepDegree_top
comap πŸ“–CompOp
24 mathmath: relrank_comap_comap_eq_relrank_inf, relfinrank_comap, map_le_iff_le_comap, map_comap_eq_self_of_surjective, relfinrank_comap_comap_eq_relfinrank_of_le, map_comap_eq_self, relrank_comap, lift_relrank_comap, gc_map_comap, map_comap_eq, relrank_comap_comap_eq_relrank_of_le, finrank_comap, lift_relrank_comap_comap_eq_lift_relrank_of_le, relfinrank_comap_comap_eq_relfinrank_of_surjective, lift_relrank_comap_comap_eq_lift_relrank_inf, separableClosure.comap_eq_of_algHom, lift_relrank_comap_comap_eq_lift_relrank_of_surjective, rank_comap, relfinrank_comap_comap_eq_relfinrank_inf, lift_rank_comap, relrank_comap_comap_eq_relrank_of_surjective, comap_map, algebraicClosure.comap_eq_of_algHom, perfectClosure.comap_eq_of_algHom
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
equivMap πŸ“–CompOp
1 mathmath: coe_equivMap_apply
equivOfEq πŸ“–CompOp
4 mathmath: equivOfEq_symm, equivOfEq_rfl, equivOfEq_apply, equivOfEq_trans
extendScalars πŸ“–CompOp
22 mathmath: extendScalars_toSubfield, extendScalars_sup, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, extendScalars_injective, extendScalars.orderIso_apply, extendScalars_adjoin, extendScalars_inf, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, extendScalars_self, extendScalars_le_iff, coe_extendScalars, le_extendScalars_iff, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, relfinrank_eq_finrank_of_le, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic, extendScalars_restrictScalars, mem_extendScalars, relrank_eq_rank_of_le, extendScalars_top, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic, extendScalars_le_extendScalars_iff
inclusion πŸ“–CompOp
8 mathmath: exists_algHom_adjoin_of_splits, coe_inclusion, Lifts.lt_iff, inclusion_self, inclusion_injective, inclusion_inclusion, Lifts.eq_iff, Lifts.le_iff
instAlgebraSubtypeMem πŸ“–CompOp
103 mathmath: extendScalars_toSubfield, LinearDisjoint.iff_inf_eq_bot, IsGalois.tower_top_intermediateField, algHomEquivAlgHomOfSplits_apply_apply, extendScalars_sup, Field.Emb.Cardinal.filtration_succ, algebraicClosure.algebraicClosure_eq_bot, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, InfiniteGalois.normalAutEquivQuotient_apply, FiniteGaloisIntermediateField.mem_fixingSubgroup_iff, extendScalars_injective, LinearDisjoint.of_isField', isAlgebraic_adjoin_iff_top, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow', Field.Emb.Cardinal.two_le_deg, finInsepDegree_le_of_left_le, isAlgebraic_adjoin_iff, Field.Emb.Cardinal.succEquiv_coherence, linearDisjoint_comm, restrictRestrictAlgEquivMapHom_apply, IsGalois.sup_right, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, adjoin_simple_adjoin_simple, normalClosure.restrictScalars_eq, restrictRestrictAlgEquivMapHom_surjective, linearDisjoint_iff', extendScalars.orderIso_apply, algebraicClosure.isIntegralClosure, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, IsTranscendenceBasis.isAlgebraic_field, extendScalars_adjoin, extendScalars_inf, botContinuousSMul, eq_separableClosure_iff, IsGalois.normalAutEquivQuotient_apply, isAlgebraic_tower_top, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, extendScalars_self, restrictScalars_adjoin_eq_sup, extendScalars_le_iff, restrictRestrictAlgEquivMapHom_injective, Transcendental.algebraicClosure, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_essFiniteType, instIsAbelianGaloisSubtypeMemIntermediateField_1, InfiniteGalois.restrict_fixedField, restrictScalars_bot_eq_self, Differential.instDifferentialAlgebraSubtypeMemIntermediateField_1, le_restrictScalars_separableClosure, instIsScalarTowerSubtypeMem_1, LinearDisjoint.of_basis_right, isTranscendenceBasis_adjoin_iff, coe_extendScalars, AdjoinPair.algebraMap_gen₁, LinearDisjoint.of_inf_eq_bot, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_adjoin_eq_top, Field.Emb.Cardinal.deg_lt_aleph0, le_extendScalars_iff, extendScalars.orderIso_symm_apply_coe, exists_isTranscendenceBasis_and_isSeparable_of_perfectField, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, LinearDisjoint.bot_right, IsGaloisGroup.intermediateField, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, spectralNorm.eq_of_normalClosure', InfiniteGalois.toAlgEquivAux_eq_liftNormal, relfinrank_eq_finrank_of_le, adjoin_eq_range_algebraMap_adjoin, LinearDisjoint.exists_field_of_isDomain, InfiniteGalois.restrictNormalHom_continuous, IsGaloisGroup.subgroup, adjoin_adjoin_comm, AlgebraicIndependent.algebraicClosure, AlgEquiv.restrictNormalHom_apply, adjoin_simple_comm, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic, extendScalars_restrictScalars, mem_extendScalars, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow, adjoin_minpoly_coeff_of_exists_primitive_element, relrank_eq_rank_of_le, extendScalars_top, algebraicIndependent_adjoin_iff, LinearDisjoint.of_finrank_sup, adjoin_adjoin_left, separableClosure_le_iff, restrictNormalHom_ker, LinearDisjoint.of_basis_mul, separableClosure_le_separableClosure_iff, transcendental_adjoin_iff, separableClosure.separableClosure_eq_bot, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, isPurelyInseparable_tower_top, FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, isGalois_iff_isGalois_bot, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic, Field.insepDegree_le_of_left_le, restrictScalars_adjoin, isSeparable_tower_top, AdjoinPair.algebraMap_genβ‚‚, AdjoinSimple.algebraMap_gen, separableClosure.isPurelyInseparable, extendScalars_le_extendScalars_iff
instAlgebraSubtypeMem_1 πŸ“–CompOp
4 mathmath: Field.Emb.Cardinal.two_le_deg, Field.Emb.Cardinal.succEquiv_coherence, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, Field.Emb.Cardinal.deg_lt_aleph0
instDistribMulActionSubtypeMem πŸ“–CompOpβ€”
instModuleSubtypeMem πŸ“–CompOp
42 mathmath: LinearDisjoint.linearIndependent_right', relfinrank_mul_finrank_top, relrank_mul_rank_top, IsGalois.card_fixingSubgroup_eq_finrank, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, finiteDimensional_right, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic, relfinrank_top_right, relrank_top_right, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_right, LinearDisjoint.basisOfBasisLeft_apply, finrank_lt_of_gt, LinearDisjoint.basisOfBasisRight_apply, LinearDisjoint.finrank_right_eq_finrank, trace_eq_finrank_mul_minpoly_nextCoeff, rank_top, trace_eq_trace_adjoin, finrank_top, LinearDisjoint.finrank_left_eq_finrank, finrank_eq_one_iff_eq_top, trace_eq_sum_roots, Algebra.norm_eq_norm_adjoin, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_right, relrank_dvd_rank_top_of_le, LinearDisjoint.linearIndependent_right, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, finrank_fixedField_eq_card, finrank_comap, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_left, relfinrank_dvd_finrank_top_of_le, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_left, finrank_le_of_le_left, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic, finrank_bot', Algebra.norm_eq_prod_roots, LinearDisjoint.basisOfBasisLeft_repr_apply, rank_bot', rank_comap, lift_rank_comap, IsGaloisGroup.card_fixingSubgroup_eq_finrank, IsGaloisGroup.finrank_fixedPoints_eq_card_subgroup, finrank_dvd_of_le_left
instModuleSubtypeMem_1 πŸ“–CompOp
9 mathmath: LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, relfinrank_eq_finrank_of_le, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, relrank_eq_rank_of_le, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic
instMulActionSubtypeMem πŸ“–CompOpβ€”
instMulActionWithZeroSubtypeMem πŸ“–CompOpβ€”
instMulDistribMulActionSubtypeMem πŸ“–CompOpβ€”
instMulSemiringActionSubtypeMem πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
90 mathmath: normalClosure_le_iff, Field.Emb.Cardinal.equivLim_coherence, lift_le, perfectClosure.map_le_of_algHom, mem_subalgebraEquivIntermediateField, map_le_iff_le_comap, Field.Emb.Cardinal.directed_filtration, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, isCyclotomicExtension_le_of_dvd, relrank_eq_one_iff, extendScalars_injective, adjoin_simple_isCompactElement, adjoin.mono, adjoin_finite_isCompactElement, adjoin_le_iff, Field.Emb.Cardinal.succEquiv_coherence, IsGalois.intermediateFieldEquivSubgroup_apply, Subfield.extendScalars_le_extendScalars_iff, normal_iff_normalClosure_le, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, extendScalars.orderIso_apply, IsGaloisGroup.le_fixedPoints_iff_le_fixingSubgroup, fixedField_antitone, mem_subalgebraEquivIntermediateField_symm, le_separableClosure_iff, separableClosure_le, restrictScalars_le_iff, separableClosure.map_le_of_algHom, normal_iff_forall_fieldRange_le, extendScalars_self, Field.Emb.Cardinal.equivSucc_coherence, le_algebraicClosure, Lifts.lt_iff, IsGaloisGroup.ofDual_intermediateFieldEquivSubgroup_apply, IsGalois.intermediateFieldEquivSubgroup_symm_apply_toDual, algebraicClosure.map_le_of_algHom, normal_iff_forall_map_le', fixingSubgroup_antitone, algebraicClosure.le_restrictScalars, adjoin_simple_le_iff, le_perfectClosure, normalClosureOperator_apply, Field.Emb.Cardinal.eq_bot_of_not_nonempty, le_restrictScalars_separableClosure, Field.Emb.Cardinal.filtration_apply, gc_map_comap, Subfield.le_extendScalars_iff, IsGalois.intermediateFieldEquivSubgroup_symm_apply, inclusion_self, Subfield.extendScalars_le_iff, extendScalars.orderIso_symm_apply_coe, normal_iff_forall_map_le, normalClosureOperator_isClosed, Subfield.extendScalars.orderIso_apply, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply, algebraicClosure.adjoin_le, Field.Emb.Cardinal.strictMono_filtration, adjoin_finset_isCompactElement, le_perfectClosure_iff, AlgHom.fieldRange_le_normalClosure, IsGaloisGroup.intermediateFieldEquivSubgroup_apply, le_algebraicClosure_iff, toSubalgebra_lt_toSubalgebra, fixedField_le, le_iff_le, IsGaloisGroup.fixedPoints_le_of_le, extendScalars_top, le_separableClosure', toSubalgebra_strictMono, separableClosure_le_iff, isClosed_restrictScalars_separableClosure, gc, FiniteGaloisIntermediateField.le_iff, separableClosure_le_separableClosure_iff, Field.Emb.Cardinal.iSup_filtration, isSimpleOrder_of_finrank_prime, Subfield.extendScalars.orderIso_symm_apply_coe, le_separableClosure, toSubalgebra_le_toSubalgebra, normalClosure_le_iff_of_normal, Lifts.eq_iff, le_normalClosure, FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, Algebra.IsAlgebraic.normalClosure_le_iSup_adjoin, relfinrank_eq_one_iff, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply_toDual, separableClosure.adjoin_le, separableClosure.le_restrictScalars, le_algebraicClosure', IsGalois.ofDual_intermediateFieldEquivSubgroup_apply
instSMulSubtypeMem πŸ“–CompOp
15 mathmath: isScalarTower_mid', smulCommClass_left, instIsScalarTowerSubtypeMem, isScalarTower_bot, continuousSMul, instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1, instFaithfulSMulSubtypeMem, isScalarTower_over_bot, smul_def, fixedField.isScalarTower, smulCommClass_right, algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, isScalarTower_mid
instSMulSubtypeMem_1 πŸ“–CompOp
1 mathmath: instIsScalarTowerSubtypeMem_1
instSMulWithZeroSubtypeMem πŸ“–CompOpβ€”
instSetLike πŸ“–CompOp
513 mathmath: extendScalars_toSubfield, AdjoinSimple.trace_gen_eq_sum_roots, finInsepDegree_top, Field.Emb.Cardinal.equivLim_coherence, InfiniteGalois.normal_iff_isGalois, exists_algHom_adjoin_of_splits, mem_perfectClosure_iff_natSepDegree_eq_one, aeval_gen_minpoly, LinearDisjoint.iff_inf_eq_bot, normal_inf, IsGalois.tower_top_intermediateField, LinearDisjoint.linearIndependent_right', adjoin.finrank, algebraMap_mem, extendScalars_sup, coe_algebraMap_over_bot, instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, mem_subalgebraEquivIntermediateField, minpoly.algEquiv_apply, isScalarTower_mid', adjoinRootEquivAdjoin_symm_apply_gen, isCyclotomicExtension_singleton_iff_eq_adjoin, coe_prod, coe_bot, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField, FiniteGaloisIntermediateField.subset_adjoin, lift_insepDegree_bot', Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, InfiniteGalois.isOpen_and_normal_iff_finite_and_isGalois, Field.Emb.Cardinal.filtration_succ, relfinrank_mul_finrank_top, algebraicClosure.algebraicClosure_eq_bot, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, coe_iSup_of_directed, InfiniteGalois.normalAutEquivQuotient_apply, IsGaloisGroup.fixingSubgroup_top, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMax, isAlgebraic_tower_bot, mem_adjoin_iff, mem_carrier, botEquiv_symm, relrank_mul_rank_top, IsGalois.card_fixingSubgroup_eq_finrank, Subfield.relfinrank_eq_finrank_of_le, isGalois_iff_isGalois_top, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin_1, InfiniteGalois.mem_bot_iff_fixed, FiniteGaloisIntermediateField.mem_fixingSubgroup_iff, exists_algHom_of_adjoin_splits, normal_iff_forall_map_eq, extendScalars_injective, ext_iff, natCast_mem, coe_neg, restrictScalars_normal, isScalarTower, Algebra.FormallySmooth.adjoin_of_algebraicIndependent, algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, isPurelyInseparable_iff_fd_isPurelyInseparable, LinearDisjoint.of_isField', coe_iInf, PowerBasis.equivAdjoinSimple_symm_aeval, Subfield.coe_toIntermediateField, lift_adjoin_simple, algebraicClosure.normalClosure_eq_self, AdjoinDouble.normal_algebraicClosure, coe_add, mem_adjoin_simple_self, isAlgebraic_adjoin_iff_top, algebraicClosure.isAlgebraic, IsGalois.normalClosure, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow', finiteDimensional_right, isAlgebraic_iff, charZero, NumberField.instIsTotallyRealSubtypeMemIntermediateFieldRatOfIsAlgebraic, mem_adjoin_of_mem, subset_adjoin_of_subset_left, instSMulMemClass, coe_inclusion, adjoin_le_iff, instIsAbelianGaloisSubtypeMemIntermediateFieldBot, Field.Emb.Cardinal.two_le_deg, smulCommClass_left, finInsepDegree_le_of_left_le, isAlgebraic_adjoin_iff, minpoly_gen, Field.Emb.Cardinal.isLeast_leastExt, aeval_coe, instIsScalarTowerSubtypeMem, coe_toSubalgebra, Field.Emb.Cardinal.succEquiv_coherence, isScalarTower_bot, relfinrank_top_right, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin, finSepDegree_adjoin_simple_eq_finrank_iff, solvableByRad.isSolvable, linearDisjoint_comm, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, equivOfEq_symm, coe_type_toSubfield, restrictRestrictAlgEquivMapHom_apply, mem_top, fieldRange_comp_val, adjoin.powerBasis_gen, equivOfEq_rfl, normal_iff_normalClosure_le, mem_perfectClosure_iff_pow_mem, relrank_top_right, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, isTotallyReal_bot, continuousSMul, relfinrank_dvd_finrank_bot, IsGalois.sup_right, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, adjoin_simple_adjoin_simple, normalClosure.restrictScalars_eq, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_right, mem_adjoin_pair_right, restrictRestrictAlgEquivMapHom_surjective, AdjoinSimple.norm_gen_eq_one, range_val, instFiniteSubtypeMemBot, isCyclotomicExtension_lcm_sup, map_mem_perfectClosure_iff, linearDisjoint_iff', IsGaloisGroup.fixedPoints_fixingSubgroup, splits_iff_mem, extendScalars.orderIso_apply, algebraicClosure.isIntegralClosure, Algebra.normalizedTrace_intermediateField, IsGaloisGroup.le_fixedPoints_iff_le_fixingSubgroup, isNormalClosure_normalClosure, mem_fixedField_iff, finrank_eq_one_iff, lift_top, IsGaloisGroup.fixingSubgroup_le_of_le, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, finrank_lt_of_gt, map_mem_separableClosure_iff, insepDegree_bot', AlgebraicIndependent.lift_reprField, isAlgebraic_adjoin, mem_subalgebraEquivIntermediateField_symm, instIsLiouvilleSubtypeMemIntermediateField, coe_mul, sSup_def, IsTranscendenceBasis.isAlgebraic_field, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PowerBasis.equivAdjoinSimple_aeval, extendScalars_adjoin, isPurelyInseparable_tower_bot, le_separableClosure_iff, charP', toIntermediateField'_toSubalgebra, extendScalars_inf, botContinuousSMul, eq_separableClosure_iff, mem_toSubfield, mem_algebraicClosure_iff, normal_iff_forall_fieldRange_le, IsGalois.normalAutEquivQuotient_apply, instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isComplex, instSubfieldClass, trace_eq_finrank_mul_minpoly_nextCoeff, rank_adjoin_eq_one_iff, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1, isAlgebraic_tower_top, rank_top, finrank_eq_fixingSubgroup_index, trace_eq_trace_adjoin, coe_isIntegral_iff, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, IsGaloisGroup.fixingSubgroup_fixedPoints, lift_inf, mem_perfectClosure_iff, exists_algHom_of_splits, extendScalars_self, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin_1, PowerBasis.equivAdjoinSimple_gen, coe_inf, Field.Emb.Cardinal.equivSucc_coherence, finrank_top, restrictScalars_adjoin_eq_sup, FiniteGaloisIntermediateField.isGalois, mem_adjoin_iff_div, Lifts.lt_iff, mem_inf, extendScalars_le_iff, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, cardinalMk_adjoin_le, coe_sum, Splits.algebraicClosure, PowerBasis.equivAdjoinSimple_symm_gen, coe_val, IsGaloisGroup.ofDual_intermediateFieldEquivSubgroup_apply, finrank_eq_finrank_subalgebra, finrank_eq_one_iff_eq_top, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable', restrictRestrictAlgEquivMapHom_injective, Transcendental.algebraicClosure, coe_toSubfield, finrank_adjoin_eq_one_iff, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, normal_iff_forall_map_le', normal_iff_forall_fieldRange_eq, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_essFiniteType, instIsAbelianGaloisSubtypeMemIntermediateField_1, instFaithfulSMulSubtypeMem, finrank_bot, InfiniteGalois.restrict_fixedField, subset_adjoin_of_subset_right, sepDegree_bot, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure, trace_eq_sum_roots, algebraMap_apply, adjoin_simple_le_iff, finInsepDegree_bot', Algebra.norm_eq_norm_adjoin, subset_adjoin, isAlgebraic_adjoin_iff_isAlgebraic, restrictScalars_bot_eq_self, adjoin.range_algebraMap_subset, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable, sup_def, mem_lift, isAlgebraic_adjoin_pair, finrank_sup_le, Differential.instDifferentialAlgebraSubtypeMemIntermediateField_1, adjoinRootEquivAdjoin_apply_root, normalClosureOperator_apply, finSepDegree_adjoin_simple_eq_natSepDegree, rank_bot, isPurelyInseparable_adjoin_iff_pow_mem, le_restrictScalars_separableClosure, coe_zero, separableClosure.adjoin_eq_of_isAlgebraic, adjoin.algebraMap_mem, coe_restrictScalars, instIsScalarTowerSubtypeMem_1, finrank_bot_mul_relfinrank, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_right, finiteDimensional_adjoin, isTranscendenceBasis_adjoin_iff, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left, lift_injective, adjoin_eq_bot_iff, coe_extendScalars, isSeparable_adjoin_simple_iff_isSeparable, AdjoinSimple.trace_gen_eq_zero, lift_sepDegree_bot', mem_adjoin_range_iff, relrank_dvd_rank_top_of_le, finSepDegree_adjoin_simple_le_finrank, card_algHom_adjoin_integral, relrank_dvd_rank_bot, AdjoinPair.algebraMap_gen₁, NumberField.finite_of_discr_bdd, LinearDisjoint.of_inf_eq_bot, AlgHom.coe_fieldRange, AlgebraicIndependent.liftAlgHom_comp_reprField, finrank_top', exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_adjoin_eq_top, inclusion_self, lift_bot, normalClosure_of_normal, charP, intCast_mem, InfiniteGalois.isOpen_iff_finite, Field.Emb.Cardinal.deg_lt_aleph0, algHomAdjoinIntegralEquiv_symm_apply_gen, adjoin_simple_eq_bot_iff, relfinrank_bot_left, iSup_eq_adjoin, le_extendScalars_iff, extendScalars.orderIso_symm_apply_coe, exists_isTranscendenceBasis_and_isSeparable_of_perfectField, sepDegree_bot', Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, inclusion_injective, Differential.instDifferentialAlgebraSubtypeMemIntermediateField, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, LinearDisjoint.bot_right, normal_iff_forall_map_le, separableClosure.isAlgebraic, expChar, rank_eq_one_iff, IsGaloisGroup.intermediateField, adjoin_rank_le_of_isAlgebraic_right, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_left, mem_adjoin_pair_left, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, spectralNorm.eq_of_normalClosure', algebraicClosure.adjoin_le, AlgHom.mem_fieldRange, finrank_fixedField_eq_card, separableClosure.isSepClosure, finrank_comap, normalClosure_def'', AdjoinSimple.norm_gen_eq_prod_roots, Subfield.relrank_eq_rank_of_le, relfinrank_eq_finrank_of_le, FixedBy.intermediateField_mem_iff, isScalarTower_over_bot, isSeparable_tower_bot, minpoly_eq, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_left, mem_toSubalgebra, isSplittingField_iff, topEquiv_symm_apply_coe, FiniteGaloisIntermediateField.adjoin_val, NumberField.of_intermediateField, adjoin_eq_range_algebraMap_adjoin, rank_top', isAlgebraic_adjoin_simple, AdjoinSimple.normal_algebraicClosure, normal_iff_forall_map_eq', intermediateFieldMap_apply_coe, topEquiv_apply, exists_algHom_adjoin_of_splits', Algebra.normalizedTrace_def, coe_inv, AdjoinSimple.isIntegral_gen, map_mem_algebraicClosure_iff, mem_restrictScalars, exists_lt_finrank_of_infinite_dimensional, Algebra.IsAlgebraic.isNormalClosure_normalClosure, isPurelyInseparable_bot, mem_algebraicClosure_iff', AlgebraicIndependent.aevalEquivField_apply_coe, LinearDisjoint.exists_field_of_isDomain, adjoin_toSubalgebra_of_isAlgebraic_right, isSeparable_adjoin_pair_of_isSeparable, finiteDimensional_left, le_perfectClosure_iff, perfectClosure.isAlgebraic, isSeparable_sup, FiniteGaloisIntermediateField.finiteDimensional, smul_def, InfiniteGalois.finGaloisGroupFunctor_map_proj_eq_proj, coe_smul, IsGaloisGroup.fixingSubgroup_bot, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, relfinrank_dvd_finrank_top_of_le, set_range_subset, InfiniteGalois.restrictNormalHom_continuous, IsGaloisGroup.subgroup, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_left, fixedField.isScalarTower, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, IsGalois.of_separable_splitting_field_aux, coe_equivMap_apply, adjoin_insert_adjoin, mem_adjoin_simple_iff, finrank_le_of_le_left, finInsepDegree_bot, IsGaloisGroup.intermediateFieldEquivSubgroup_apply, krullTopology_mem_nhds_one_iff, one_mem, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_exists_isPrimitiveRoot, algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, lift_cardinalMk_adjoin_le, krullTopology_mem_nhds_one_iff_of_normal, finrank_bot', isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, Lifts.exists_lift_of_splits, separableClosure.isSeparable, adjoin_toSubalgebra_of_isAlgebraic_left, Algebra.norm_eq_prod_roots, adjoin.finiteDimensional, botEquiv_def, le_algebraicClosure_iff, adjoin_adjoin_comm, AlgebraicIndependent.algebraicClosure, finSepDegree_bot', rank_sup_le, coe_pow, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateField, AlgEquiv.restrictNormalHom_apply, instIsAbelianGaloisSubtypeMemIntermediateField, adjoin_simple_comm, algebraicClosure.isAlgClosure, inclusion_inclusion, extendScalars_restrictScalars, zero_mem, adjoin_subset_adjoin_iff, mem_extendScalars, perfectClosure.perfectField, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMin, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, mem_mk, InfiniteGalois.proj_of_le, expChar', exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow, adjoin_minpoly_coeff_of_exists_primitive_element, coe_type_toSubalgebra, relrank_eq_rank_of_le, lift_adjoin, smulCommClass_right, extendScalars_top, algebraicIndependent_adjoin_iff, mem_separableClosure_iff, rank_eq_rank_subalgebra, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, lift_sup, normalClosure.normal, adjoin_adjoin_left, normalClosure_mono, separableClosure_le_iff, solvableByRad.isIntegral, restrictNormalHom_ker, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin, adjoin_rank_le_of_isAlgebraic_left, algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, insepDegree_bot, equivOfEq_apply, rank_bot', gc, isAlgebraic_adjoin_iff_bot, fieldRange_val, liftAlgEquiv_apply, insepDegree_top, separableClosure_le_separableClosure_iff, transcendental_adjoin_iff, algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, rank_comap, separableClosure.separableClosure_eq_bot, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right, rank_bot_mul_relrank, finiteDimensional_map, finSepDegree_top, lift_rank_comap, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_right, instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, normalClosure_le_iff_of_normal, AlgHom.fieldRange_of_normal, Lifts.eq_iff, IsGaloisGroup.card_fixingSubgroup_eq_finrank, normalClosure_map_eq, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, relrank_bot_left, IsPrimitiveRoot.intermediateField_adjoin_isCyclotomicExtension, IsGaloisGroup.finrank_fixedPoints_eq_card_subgroup, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Subfield.mem_extendScalars, isPurelyInseparable_tower_top, le_normalClosure, equivOfEq_trans, normalClosure_def', adjoin_self, mem_bot, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, mem_restrict, perfectClosure.perfectRing, FixedPoints.mem_intermediateField_iff, LinearDisjoint.isDomain, finrank_dvd_of_le_right, finrank_le_of_le_right, coe_top, AdjoinSimple.coe_gen, isGalois_bot, intermediateFieldMap_symm_apply_coe, finrank_dvd_of_le_left, coe_sInf, FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, isGalois_iff_isGalois_bot, Field.insepDegree_le_of_left_le, finiteDimensional_adjoin_pair, normal_sup, coe_algebraMap_apply, separableClosure.isGalois, isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, restrictScalars_adjoin, finrank_adjoin_simple_eq_one_iff, isSeparable_tower_top, normalClosure.is_finiteDimensional, finiteDimensional_sup, Lifts.le_iff, trace_adjoinSimpleGen, normal_iff_normalClosure_eq, rank_adjoin_simple_eq_one_iff, separableClosure.adjoin_eq_of_isAlgebraic_of_isSeparable, AdjoinPair.algebraMap_genβ‚‚, isIntegral_iff, Subfield.coe_extendScalars, separableClosure.normalClosure_eq_self, IsGaloisGroup.map_mulEquivAlgEquiv_fixingSubgroup, coe_map, adjoin.powerBasis_dim, IsGalois.of_fixedField_normal_subgroup, essFiniteType_iff, Field.Emb.cardinal_separableClosure, AdjoinSimple.algebraMap_gen, isPurelyInseparable_sup, separableClosure.adjoin_le, IsGalois.mem_bot_iff_fixed, FiniteGaloisIntermediateField.adjoin_simple_le_iff, separableClosure.isPurelyInseparable, isPurelyInseparable_adjoin_simple_iff_pow_mem, adjoin_rootSet_isSplittingField, nonempty_algHom_adjoin_of_splits, isScalarTower_mid, finSepDegree_bot, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_isSepClosed, perfectClosure.isPurelyInseparable, isSeparable_adjoin_iff_isSeparable, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal, sepDegree_top, adjoin_contains_field_as_subfield, extendScalars_le_extendScalars_iff, coe_one
intermediateFieldMap πŸ“–CompOp
2 mathmath: intermediateFieldMap_apply_coe, intermediateFieldMap_symm_apply_coe
liftAlgEquiv πŸ“–CompOp
1 mathmath: liftAlgEquiv_apply
map πŸ“–CompOp
52 mathmath: map_mono, perfectClosure.map_le_of_algHom, relfinrank_comap, map_le_iff_le_comap, AlgHom.fieldRange_eq_map, map_comap_eq_self_of_surjective, normal_iff_forall_map_eq, LinearDisjoint.map', algebraicClosure.map_eq_of_algebraicClosure_eq_bot, map_map, fieldRange_comp_val, toSubalgebra_map, map_fixingSubgroup, map_comap_eq_self, adjoin_map, relrank_comap, toSubfield_map, separableClosure.map_le_of_algHom, AlgHom.map_fieldRange, lift_relrank_comap, algebraicClosure.map_le_of_algHom, normal_iff_forall_map_le', map_injective, gc_map_comap, map_comap_eq, map_iSup, map_iInf, relfinrank_map_map, map_fixingSubgroup_index, normal_iff_forall_map_le, normalClosure_def'', normal_iff_forall_map_eq', intermediateFieldMap_apply_coe, coe_equivMap_apply, IsGalois.map_fixingSubgroup, relrank_map_map, separableClosure.map_eq_of_separableClosure_eq_bot, perfectClosure.map_eq_of_algEquiv, algebraicClosure.map_eq_of_algEquiv, map_inf, map_sup, finiteDimensional_map, separableClosure.map_eq_of_algEquiv, lift_relrank_map_map, normalClosure_map_eq, normalClosure_def', intermediateFieldMap_symm_apply_coe, map_id, LinearDisjoint.map, comap_map, coe_map, map_bot
module' πŸ“–CompOp
70 mathmath: adjoin.finrank, InfiniteGalois.isOpen_and_normal_iff_finite_and_isGalois, Subfield.relfinrank_eq_finrank_of_le, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin_1, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic, isScalarTower, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin, finSepDegree_adjoin_simple_eq_finrank_iff, relfinrank_dvd_finrank_bot, instFiniteSubtypeMemBot, LinearDisjoint.basisOfBasisLeft_apply, finrank_eq_one_iff, LinearDisjoint.basisOfBasisRight_apply, LinearDisjoint.finrank_right_eq_finrank, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isComplex, rank_adjoin_eq_one_iff, finrank_eq_fixingSubgroup_index, IsGalois.IntermediateField.AdjoinSimple.card_aut_eq_finrank, LinearDisjoint.finrank_left_eq_finrank, finrank_eq_finrank_subalgebra, LinearDisjoint.finrank_sup, finrank_adjoin_eq_one_iff, finrank_bot, finrank_sup_le, rank_bot, finrank_bot_mul_relfinrank, finiteDimensional_adjoin, finSepDegree_adjoin_simple_le_finrank, relrank_dvd_rank_bot, NumberField.finite_of_discr_bdd, finrank_top', InfiniteGalois.isOpen_iff_finite, relfinrank_bot_left, LinearDisjoint.rank_sup, rank_sup_le_of_isAlgebraic, rank_eq_one_iff, adjoin_rank_le_of_isAlgebraic_right, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_left, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, Subfield.relrank_eq_rank_of_le, rank_top', Algebra.normalizedTrace_def, exists_lt_finrank_of_infinite_dimensional, adjoin_rank_le_of_isAlgebraic, finiteDimensional_left, FiniteGaloisIntermediateField.finiteDimensional, IsGalois.of_separable_splitting_field_aux, krullTopology_mem_nhds_one_iff, krullTopology_mem_nhds_one_iff_of_normal, adjoin.finiteDimensional, rank_sup_le, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateField, rank_eq_rank_subalgebra, LinearDisjoint.basisOfBasisLeft_repr_apply, adjoin_rank_le_of_isAlgebraic_left, rank_bot_mul_relrank, finiteDimensional_map, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_right, relrank_bot_left, LinearDisjoint.isDomain, finrank_dvd_of_le_right, finrank_le_of_le_right, finiteDimensional_adjoin_pair, finrank_adjoin_simple_eq_one_iff, normalClosure.is_finiteDimensional, finiteDimensional_sup, rank_adjoin_simple_eq_one_iff, LinearDisjoint.isField_of_isAlgebraic, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal
restrict πŸ“–CompOp
2 mathmath: mem_restrict, lift_restrict
restrictScalars πŸ“–CompOp
42 mathmath: Field.Emb.Cardinal.filtration_succ, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, restrictScalars_normal, restrictScalars_sup, restrictScalars_top, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, adjoin_simple_adjoin_simple, normalClosure.restrictScalars_eq, restrictScalars_adjoin_of_algEquiv, restrictScalars_eq_top_iff, restrictScalars_le_iff, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, restrictScalars_adjoin_eq_sup, extendScalars_le_iff, restrictScalars_injective, restrictScalars_inf, algebraicClosure.le_restrictScalars, restrictScalars_bot_eq_self, le_restrictScalars_separableClosure, coe_restrictScalars, restrictScalars_toSubfield, le_extendScalars_iff, restrictScalars_inj, extendScalars.orderIso_symm_apply_coe, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, mem_restrictScalars, restrictScalars_toSubalgebra, IsGalois.of_separable_splitting_field_aux, adjoin_adjoin_comm, adjoin_simple_comm, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic, extendScalars_restrictScalars, separableClosure.eq_restrictScalars_of_isSeparable, adjoin_adjoin_left, isClosed_restrictScalars_separableClosure, separableClosure_le_separableClosure_iff, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, algebraicClosure.eq_restrictScalars_of_isAlgebraic, FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic, restrictScalars_adjoin, separableClosure.le_restrictScalars
restrict_algEquiv πŸ“–CompOpβ€”
toAlgebra πŸ“–CompOp
1 mathmath: algebraMap_apply
toField πŸ“–CompOp
395 mathmath: extendScalars_toSubfield, AdjoinSimple.trace_gen_eq_sum_roots, finInsepDegree_top, Field.Emb.Cardinal.equivLim_coherence, InfiniteGalois.normal_iff_isGalois, exists_algHom_adjoin_of_splits, aeval_gen_minpoly, LinearDisjoint.iff_inf_eq_bot, normal_inf, IsGalois.tower_top_intermediateField, LinearDisjoint.linearIndependent_right', adjoin.finrank, extendScalars_sup, coe_algebraMap_over_bot, instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, SeparableClosure.isSepClosed, minpoly.algEquiv_apply, isScalarTower_mid', adjoinRootEquivAdjoin_symm_apply_gen, isCyclotomicExtension_singleton_iff_eq_adjoin, coe_prod, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField, lift_insepDegree_bot', Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, InfiniteGalois.isOpen_and_normal_iff_finite_and_isGalois, Field.Emb.Cardinal.filtration_succ, relfinrank_mul_finrank_top, algebraicClosure.algebraicClosure_eq_bot, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, InfiniteGalois.normalAutEquivQuotient_apply, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMax, isAlgebraic_tower_bot, botEquiv_symm, relrank_mul_rank_top, IsGalois.card_fixingSubgroup_eq_finrank, Subfield.relfinrank_eq_finrank_of_le, isGalois_iff_isGalois_top, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin_1, FiniteGaloisIntermediateField.mem_fixingSubgroup_iff, exists_algHom_of_adjoin_splits, normal_iff_forall_map_eq, extendScalars_injective, restrictScalars_normal, isScalarTower, Algebra.FormallySmooth.adjoin_of_algebraicIndependent, algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, isPurelyInseparable_iff_fd_isPurelyInseparable, LinearDisjoint.of_isField', PowerBasis.equivAdjoinSimple_symm_aeval, InfiniteGalois.toAlgEquivAux_eq_proj_of_mem, lift_adjoin_simple, algebraicClosure.normalClosure_eq_self, AdjoinDouble.normal_algebraicClosure, isAlgebraic_adjoin_iff_top, algebraicClosure.isAlgebraic, IsGalois.normalClosure, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow', finiteDimensional_right, isAlgebraic_iff, charZero, NumberField.instIsTotallyRealSubtypeMemIntermediateFieldRatOfIsAlgebraic, coe_inclusion, instIsAbelianGaloisSubtypeMemIntermediateFieldBot, Field.Emb.Cardinal.two_le_deg, finInsepDegree_le_of_left_le, isAlgebraic_adjoin_iff, minpoly_gen, aeval_coe, Field.Emb.Cardinal.succEquiv_coherence, relfinrank_top_right, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin, finSepDegree_adjoin_simple_eq_finrank_iff, solvableByRad.isSolvable, linearDisjoint_comm, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, equivOfEq_symm, restrictRestrictAlgEquivMapHom_apply, fieldRange_comp_val, adjoin.powerBasis_gen, equivOfEq_rfl, normal_iff_normalClosure_le, relrank_top_right, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, isTotallyReal_bot, relfinrank_dvd_finrank_bot, IsGalois.sup_right, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, adjoin_simple_adjoin_simple, normalClosure.restrictScalars_eq, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_right, restrictRestrictAlgEquivMapHom_surjective, AdjoinSimple.norm_gen_eq_one, range_val, instFiniteSubtypeMemBot, isCyclotomicExtension_lcm_sup, linearDisjoint_iff', splits_iff_mem, extendScalars.orderIso_apply, Algebra.normalizedTrace_intermediateField, isNormalClosure_normalClosure, finrank_eq_one_iff, lift_top, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, finrank_lt_of_gt, insepDegree_bot', exists_algHom_adjoin_of_splits_of_aeval, AlgebraicIndependent.lift_reprField, isAlgebraic_adjoin, instIsLiouvilleSubtypeMemIntermediateField, SeparableClosure.hasEnoughRootsOfUnity_pow, IsTranscendenceBasis.isAlgebraic_field, PowerBasis.equivAdjoinSimple_aeval, extendScalars_adjoin, isPurelyInseparable_tower_bot, le_separableClosure_iff, charP', extendScalars_inf, botContinuousSMul, eq_separableClosure_iff, normal_iff_forall_fieldRange_le, IsGalois.normalAutEquivQuotient_apply, instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isComplex, trace_eq_finrank_mul_minpoly_nextCoeff, rank_adjoin_eq_one_iff, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1, isAlgebraic_tower_top, rank_top, finrank_eq_fixingSubgroup_index, trace_eq_trace_adjoin, coe_isIntegral_iff, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, InfiniteGalois.proj_adjoin_singleton_val, lift_inf, exists_algHom_of_splits, extendScalars_self, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin_1, PowerBasis.equivAdjoinSimple_gen, Field.Emb.Cardinal.equivSucc_coherence, finrank_top, restrictScalars_adjoin_eq_sup, FiniteGaloisIntermediateField.isGalois, Lifts.lt_iff, extendScalars_le_iff, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, coe_sum, Splits.algebraicClosure, PowerBasis.equivAdjoinSimple_symm_gen, SeparableClosure.hasEnoughRootsOfUnity, coe_val, finrank_eq_finrank_subalgebra, finrank_eq_one_iff_eq_top, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable', restrictRestrictAlgEquivMapHom_injective, Transcendental.algebraicClosure, finrank_adjoin_eq_one_iff, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, normal_iff_forall_map_le', normal_iff_forall_fieldRange_eq, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_essFiniteType, instIsAbelianGaloisSubtypeMemIntermediateField_1, finrank_bot, InfiniteGalois.restrict_fixedField, sepDegree_bot, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure, trace_eq_sum_roots, finInsepDegree_bot', Algebra.norm_eq_norm_adjoin, isAlgebraic_adjoin_iff_isAlgebraic, restrictScalars_bot_eq_self, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable, mem_lift, isAlgebraic_adjoin_pair, finrank_sup_le, Differential.instDifferentialAlgebraSubtypeMemIntermediateField_1, adjoinRootEquivAdjoin_apply_root, normalClosureOperator_apply, finSepDegree_adjoin_simple_eq_natSepDegree, rank_bot, isPurelyInseparable_adjoin_iff_pow_mem, le_restrictScalars_separableClosure, instIsScalarTowerSubtypeMem_1, finrank_bot_mul_relfinrank, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_right, finiteDimensional_adjoin, isTranscendenceBasis_adjoin_iff, lift_injective, coe_extendScalars, isSeparable_adjoin_simple_iff_isSeparable, AdjoinSimple.trace_gen_eq_zero, lift_sepDegree_bot', relrank_dvd_rank_top_of_le, finSepDegree_adjoin_simple_le_finrank, card_algHom_adjoin_integral, relrank_dvd_rank_bot, NumberField.finite_of_discr_bdd, LinearDisjoint.of_inf_eq_bot, AlgebraicIndependent.liftAlgHom_comp_reprField, finrank_top', exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_adjoin_eq_top, inclusion_self, lift_bot, normalClosure_of_normal, charP, InfiniteGalois.isOpen_iff_finite, Field.Emb.Cardinal.deg_lt_aleph0, algHomAdjoinIntegralEquiv_symm_apply_gen, relfinrank_bot_left, le_extendScalars_iff, extendScalars.orderIso_symm_apply_coe, exists_isTranscendenceBasis_and_isSeparable_of_perfectField, sepDegree_bot', Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, inclusion_injective, Differential.instDifferentialAlgebraSubtypeMemIntermediateField, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, LinearDisjoint.bot_right, normal_iff_forall_map_le, separableClosure.isAlgebraic, expChar, rank_eq_one_iff, adjoin_rank_le_of_isAlgebraic_right, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_left, spectralNorm.eq_of_normalClosure, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure', finrank_fixedField_eq_card, separableClosure.isSepClosure, finrank_comap, InfiniteGalois.toAlgEquivAux_eq_liftNormal, normalClosure_def'', AdjoinSimple.norm_gen_eq_prod_roots, Subfield.relrank_eq_rank_of_le, relfinrank_eq_finrank_of_le, isSeparable_tower_bot, minpoly_eq, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_left, isSplittingField_iff, topEquiv_symm_apply_coe, FiniteGaloisIntermediateField.adjoin_val, NumberField.of_intermediateField, rank_top', isAlgebraic_adjoin_simple, AdjoinSimple.normal_algebraicClosure, normal_iff_forall_map_eq', intermediateFieldMap_apply_coe, topEquiv_apply, Algebra.normalizedTrace_def, AdjoinSimple.isIntegral_gen, exists_lt_finrank_of_infinite_dimensional, Algebra.IsAlgebraic.isNormalClosure_normalClosure, isPurelyInseparable_bot, AlgebraicIndependent.aevalEquivField_apply_coe, LinearDisjoint.exists_field_of_isDomain, isSeparable_adjoin_pair_of_isSeparable, finiteDimensional_left, le_perfectClosure_iff, perfectClosure.isAlgebraic, isSeparable_sup, FiniteGaloisIntermediateField.finiteDimensional, InfiniteGalois.finGaloisGroupFunctor_map_proj_eq_proj, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, relfinrank_dvd_finrank_top_of_le, InfiniteGalois.restrictNormalHom_continuous, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_left, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, IsGalois.of_separable_splitting_field_aux, coe_equivMap_apply, finrank_le_of_le_left, finInsepDegree_bot, krullTopology_mem_nhds_one_iff, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_exists_isPrimitiveRoot, algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, krullTopology_mem_nhds_one_iff_of_normal, finrank_bot', isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, separableClosure.isSeparable, Algebra.norm_eq_prod_roots, adjoin.finiteDimensional, botEquiv_def, le_algebraicClosure_iff, adjoin_adjoin_comm, AlgebraicIndependent.algebraicClosure, finSepDegree_bot', val_mk, rank_sup_le, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateField, AlgEquiv.restrictNormalHom_apply, InfiniteGalois.mk_toAlgEquivAux, instIsAbelianGaloisSubtypeMemIntermediateField, adjoin_simple_comm, algebraicClosure.isAlgClosure, inclusion_inclusion, extendScalars_restrictScalars, mem_extendScalars, perfectClosure.perfectField, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMin, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, InfiniteGalois.proj_of_le, expChar', exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow, adjoin_minpoly_coeff_of_exists_primitive_element, relrank_eq_rank_of_le, lift_adjoin, extendScalars_top, algebraicIndependent_adjoin_iff, rank_eq_rank_subalgebra, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, lift_sup, normalClosure.normal, adjoin_adjoin_left, normalClosure_mono, separableClosure_le_iff, solvableByRad.isIntegral, restrictNormalHom_ker, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin, adjoin_rank_le_of_isAlgebraic_left, algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, insepDegree_bot, equivOfEq_apply, rank_bot', isAlgebraic_adjoin_iff_bot, fieldRange_val, liftAlgEquiv_apply, insepDegree_top, separableClosure_le_separableClosure_iff, transcendental_adjoin_iff, algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, rank_comap, separableClosure.separableClosure_eq_bot, rank_bot_mul_relrank, finiteDimensional_map, finSepDegree_top, lift_rank_comap, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_right, instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, normalClosure_le_iff_of_normal, AlgHom.fieldRange_of_normal, Lifts.eq_iff, IsGaloisGroup.card_fixingSubgroup_eq_finrank, normalClosure_map_eq, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, relrank_bot_left, IsPrimitiveRoot.intermediateField_adjoin_isCyclotomicExtension, IsGaloisGroup.finrank_fixedPoints_eq_card_subgroup, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, isPurelyInseparable_tower_top, le_normalClosure, equivOfEq_trans, normalClosure_def', Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, mem_restrict, LinearDisjoint.isDomain, finrank_dvd_of_le_right, finrank_le_of_le_right, isGalois_bot, intermediateFieldMap_symm_apply_coe, finrank_dvd_of_le_left, FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, isGalois_iff_isGalois_bot, Field.insepDegree_le_of_left_le, finiteDimensional_adjoin_pair, normal_sup, coe_algebraMap_apply, separableClosure.isGalois, isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, restrictScalars_adjoin, finrank_adjoin_simple_eq_one_iff, isSeparable_tower_top, normalClosure.is_finiteDimensional, finiteDimensional_sup, Lifts.le_iff, trace_adjoinSimpleGen, normal_iff_normalClosure_eq, rank_adjoin_simple_eq_one_iff, isIntegral_iff, separableClosure.normalClosure_eq_self, adjoin.powerBasis_dim, IsGalois.of_fixedField_normal_subgroup, essFiniteType_iff, Field.Emb.cardinal_separableClosure, isPurelyInseparable_sup, splits_of_splits, separableClosure.isPurelyInseparable, isPurelyInseparable_adjoin_simple_iff_pow_mem, adjoin_rootSet_isSplittingField, nonempty_algHom_adjoin_of_splits, isScalarTower_mid, finSepDegree_bot, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_isSepClosed, perfectClosure.isPurelyInseparable, isSeparable_adjoin_iff_isSeparable, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal, sepDegree_top, extendScalars_le_extendScalars_iff
toSubalgebra πŸ“–CompOp
49 mathmath: toSubalgebra_toIntermediateField', algHomEquivAlgHomOfSplits_symm_apply, adjoin_intermediateField_toSubalgebra_of_isAlgebraic, mem_carrier, inf_toSubalgebra, coe_toSubalgebra, Field.Emb.Cardinal.succEquiv_coherence, bot_toSubalgebra, sup_toSubalgebra_of_isAlgebraic_left, AlgHom.fieldRange_toSubalgebra, linearDisjoint_iff, toSubalgebra_map, adjoin_simple_toSubalgebra_of_integral, range_val, sup_toSubalgebra_of_isAlgebraic, linearDisjoint_iff', sInf_toSubalgebra, toIntermediateField'_toSubalgebra, top_toSubalgebra, finrank_eq_finrank_subalgebra, adjoin_eq_algebra_adjoin, toIntermediateField_toSubalgebra, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left, algebraicClosure_toSubalgebra, adjoin_simple_toSubalgebra_of_isAlgebraic, sup_toSubalgebra_of_left, toSubalgebra_injective, adjoin_toSubalgebra, mem_toSubalgebra, adjoin_toSubalgebra_of_isAlgebraic_right, restrictScalars_toSubalgebra, toSubalgebra_iSup_of_directed, adjoin_toSubalgebra_of_isAlgebraic_left, toSubalgebra_lt_toSubalgebra, coe_type_toSubalgebra, toSubalgebra_inj, rank_eq_rank_subalgebra, toSubalgebra_strictMono, sup_toSubalgebra_of_right, equivOfEq_apply, le_sup_toSubalgebra, adjoin_toSubalgebra_of_isAlgebraic, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right, sup_toSubalgebra_of_isAlgebraic_right, toSubalgebra_le_toSubalgebra, toSubalgebra_toIntermediateField, iInf_toSubalgebra, adjoin_algebraic_toSubalgebra, algebra_adjoin_le_adjoin
toSubfield πŸ“–CompOp
26 mathmath: extendScalars_toSubfield, fieldRange_le, sSup_toSubfield, Subfield.extendScalars_toSubfield, iInf_toSubfield, coe_type_toSubfield, toSubfield_map, mem_toSubfield, AlgHom.fieldRange_toSubfield, coe_toSubfield, restrictScalars_toSubfield, Subfield.le_extendScalars_iff, Subfield.extendScalars_le_iff, iSup_toSubfield, toSubfield_inj, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, bot_toSubfield, Subfield.toIntermediateField_toSubfield, top_toSubfield, adjoin_le_subfield, sInf_toSubfield, inf_toSubfield, Subfield.extendScalars.orderIso_symm_apply_coe, sup_toSubfield, adjoin_toSubfield, toSubfield_injective
val πŸ“–CompOp
11 mathmath: algHomEquivAlgHomOfSplits_apply, exists_algHom_of_adjoin_splits, fieldRange_comp_val, range_val, exists_algHom_of_splits, coe_val, AlgebraicIndependent.liftAlgHom_comp_reprField, LinearDisjoint.linearIndependent_right, val_mk, fieldRange_val, LinearDisjoint.linearIndependent_left

Theorems

NameKindAssumesProvesValidatesDepends On
add_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
aeval_coe πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Algebra.toSMul
β€”Polynomial.aeval_algHom_apply
AlgHom.algHomClass
IsScalarTower.left
isScalarTower
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IntermediateField
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
toAlgebra
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
algebraMap_mem πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
β€”Subalgebra.algebraMap_mem'
coe_add πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubfieldClass.toField
instSubfieldClass
β€”instSubfieldClass
coe_algebraMap_apply πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
RingHom.instFunLike
algebraMap
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
coe_copy πŸ“–mathematicalSetLike.coe
IntermediateField
instSetLike
copyβ€”β€”
coe_equivMap_apply πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
map
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
equivMap
AlgHom
AlgHom.funLike
β€”IsScalarTower.left
coe_extendScalars πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
β€”β€”
coe_inclusion πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
inclusion
β€”IsScalarTower.left
coe_inv πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
InvMemClass.inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
SubfieldClass.toInvMemClass
Field.toDivisionRing
instSubfieldClass
β€”SubfieldClass.toInvMemClass
instSubfieldClass
coe_map πŸ“–mathematicalβ€”SetLike.coe
IntermediateField
instSetLike
map
Set.image
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
β€”β€”
coe_mul πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
SubfieldClass.toField
instSubfieldClass
β€”instSubfieldClass
coe_neg πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
SubringClass.toNegMemClass
SubfieldClass.toSubringClass
instSubfieldClass
β€”SubringClass.toNegMemClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_one πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
OneMemClass.one
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
β€”AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_pow πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
SubmonoidClass.nPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SubsemiringClass.toSubmonoidClass
Semiring.toNonAssocSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
Monoid.toNatPow
β€”SubmonoidClass.coe_pow
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_prod πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
Finset.prod
CommRing.toCommMonoid
Field.toCommRing
toField
Finset.univ
β€”SubmonoidClass.coe_finset_prod
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_restrictScalars πŸ“–mathematicalβ€”SetLike.coe
IntermediateField
instSetLike
restrictScalars
β€”β€”
coe_smul πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
SetLike.smul'
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
Semifield.toCommSemiring
instSMulMemClass
β€”instSMulMemClass
coe_sum πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
toField
Finset.univ
β€”AddSubmonoidClass.coe_finset_sum
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_toSubalgebra πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra.instSetLike
toSubalgebra
IntermediateField
instSetLike
β€”β€”
coe_toSubfield πŸ“–mathematicalβ€”SetLike.coe
Subfield
Field.toDivisionRing
Subfield.instSetLike
toSubfield
IntermediateField
instSetLike
β€”β€”
coe_type_toSubalgebra πŸ“–mathematicalβ€”Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
toSubalgebra
IntermediateField
instSetLike
β€”β€”
coe_type_toSubfield πŸ“–mathematicalβ€”Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
toSubfield
IntermediateField
instSetLike
β€”β€”
coe_val πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
IntermediateField
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
val
β€”IsScalarTower.left
coe_zero πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubsemiringClass.toAddSubmonoidClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
β€”AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
copy_eq πŸ“–mathematicalSetLike.coe
IntermediateField
instSetLike
copyβ€”SetLike.coe_injective
div_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
β€”div_mem
SubfieldClass.toSubgroupClass
instSubfieldClass
equivOfEq_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
equivOfEq
Subalgebra
Subalgebra.instSetLike
toSubalgebra
β€”IsScalarTower.left
equivOfEq_rfl πŸ“–mathematicalβ€”equivOfEq
IntermediateField
AlgEquiv.refl
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
β€”AlgEquiv.ext
IsScalarTower.left
equivOfEq_symm πŸ“–mathematicalβ€”AlgEquiv.symm
IntermediateField
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
equivOfEq
β€”IsScalarTower.left
equivOfEq_trans πŸ“–mathematicalβ€”AlgEquiv.trans
IntermediateField
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
equivOfEq
β€”IsScalarTower.left
ext πŸ“–β€”IntermediateField
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
β€”ext
extendScalars_injective πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
β€”OrderIso.injective
extendScalars_le_extendScalars_iff πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
β€”β€”
extendScalars_le_iff πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
restrictScalars
algebra'
Algebra.toSMul
CommSemiring.toSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
isScalarTower_mid'
β€”β€”
extendScalars_restrictScalars πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictScalars
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
extendScalars
β€”IsScalarTower.left
isScalarTower_mid'
extendScalars_toSubfield πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
toSubfield
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
β€”SetLike.coe_injective
fieldRange_comp_val πŸ“–mathematicalβ€”AlgHom.fieldRange
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.comp
val
map
β€”toSubalgebra_injective
IsScalarTower.left
toSubalgebra_map
AlgHom.fieldRange_toSubalgebra
AlgHom.range_comp
range_val
fieldRange_le πŸ“–mathematicalβ€”Subfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
Subfield.instPartialOrder
RingHom.fieldRange
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSubfield
β€”Subalgebra.range_subset
Set.mem_range
RingHom.mem_fieldRange
fieldRange_val πŸ“–mathematicalβ€”AlgHom.fieldRange
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
val
β€”SetLike.ext'
IsScalarTower.left
Subtype.range_val
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
IntermediateField
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
inclusion_inclusion πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
AlgHom
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
inclusion
le_trans
β€”Subalgebra.inclusion_inclusion
inclusion_injective πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
inclusion
β€”Subalgebra.inclusion_injective
inclusion_self πŸ“–mathematicalβ€”inclusion
le_refl
IntermediateField
PartialOrder.toPreorder
instPartialOrder
AlgHom.id
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
β€”Subalgebra.inclusion_self
instFaithfulSMulSubtypeMem πŸ“–mathematicalβ€”FaithfulSMul
IntermediateField
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subfield.instFaithfulSMulSubtypeMem
instIsScalarTowerSubtypeMem πŸ“–mathematicalβ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subfield.instIsScalarTowerSubtypeMem
instIsScalarTowerSubtypeMem_1 πŸ“–mathematicalβ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.toSMul
Semifield.toCommSemiring
algebra'
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instSMulSubtypeMem_1
isScalarTower_mid
β€”isScalarTower
IsScalarTower.left
isScalarTower_mid
instSMulMemClass πŸ“–mathematicalβ€”SMulMemClass
IntermediateField
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSetLike
β€”smul_mem
instSubfieldClass πŸ“–mathematicalβ€”SubfieldClass
IntermediateField
Field.toDivisionRing
instSetLike
β€”Subsemigroup.mul_mem'
Submonoid.one_mem'
Subsemiring.add_mem'
Subsemiring.zero_mem'
neg_mem
inv_mem'
intCast_mem πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”intCast_mem
SubfieldClass.toSubringClass
instSubfieldClass
intermediateFieldMap_apply_coe πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
map
AlgEquiv.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DFunLike.coe
AlgEquiv
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
intermediateFieldMap
β€”IsScalarTower.left
intermediateFieldMap_symm_apply_coe πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
DFunLike.coe
AlgEquiv
map
AlgEquiv.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
AlgEquiv.symm
intermediateFieldMap
β€”IsScalarTower.left
inv_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”InvMemClass.inv_mem
SubfieldClass.toInvMemClass
instSubfieldClass
inv_mem' πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
Semifield.toCommSemiring
toSubalgebra
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”β€”
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
module'
β€”Subalgebra.instIsScalarTowerSubtypeMem
isScalarTower_bot πŸ“–mathematicalβ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
instSMulSubtypeMem
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
β€”IsScalarTower.subalgebra
isScalarTower_mid πŸ“–mathematicalβ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instSMulSubtypeMem
β€”IsScalarTower.subalgebra'
isScalarTower_mid' πŸ“–mathematicalβ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instSMulSubtypeMem
β€”IsScalarTower.left
isScalarTower_mid
IsScalarTower.right
le_extendScalars_iff πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
restrictScalars
algebra'
Algebra.toSMul
CommSemiring.toSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
isScalarTower_mid'
β€”β€”
liftAlgEquiv_apply πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
lift
DFunLike.coe
AlgEquiv
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
isScalarTower
AlgEquiv.instFunLike
liftAlgEquiv
β€”IsScalarTower.left
isScalarTower
lift_inj πŸ“–mathematicalβ€”liftβ€”IsScalarTower.left
lift_injective
lift_injective πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
lift
β€”map_injective
IsScalarTower.left
lift_le πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift
β€”IsScalarTower.left
lift_restrict πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift
restrict
β€”ext
lift_le
IsScalarTower.left
mem_restrict
mem_lift
list_prod_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”list_prod_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
list_sum_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”list_sum_mem
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
map_id πŸ“–mathematicalβ€”map
AlgHom.id
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”SetLike.coe_injective
Set.image_id
map_injective πŸ“–mathematicalβ€”IntermediateField
map
β€”Subalgebra.map_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
toSubalgebra_map
toSubalgebra_injective
map_le_iff_le_comap πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
AlgHom.comp
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”SetLike.coe_injective
Set.image_image
map_mono πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapβ€”SetLike.coe_mono
instIsConcreteLE
Set.image_mono
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
Semifield.toCommSemiring
toSubalgebra
IntermediateField
SetLike.instMembership
instSetLike
β€”β€”
mem_extendScalars πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
β€”β€”
mem_lift πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
lift
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
Function.Injective.mem_set_image
Subtype.val_injective
mem_mk πŸ“–mathematicalSubsemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
Subsemiring.instSetLike
DFunLike.coe
RingHom
CommSemiring.toSemiring
Semifield.toCommSemiring
RingHom.instFunLike
algebraMap
Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
IntermediateField
instSetLike
β€”β€”
mem_restrict πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
restrict
β€”Set.ext_iff
Set.range_inclusion
mem_restrictScalars πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
restrictScalars
β€”β€”
mem_toSubalgebra πŸ“–mathematicalβ€”Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
toSubalgebra
IntermediateField
instSetLike
β€”β€”
mem_toSubfield πŸ“–mathematicalβ€”Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
toSubfield
IntermediateField
instSetLike
β€”β€”
mul_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
multiset_prod_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Multiset.prod
CommRing.toCommMonoid
Field.toCommRing
β€”multiset_prod_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
multiset_sum_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”multiset_sum_mem
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
natCast_mem πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
neg_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
β€”SubringClass.toNegMemClass
Subalgebra.instSubringClass
one_mem πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
pow_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
Field.toDivisionRing
β€”zpow_mem
SubfieldClass.toSubgroupClass
instSubfieldClass
prod_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Finset.prod
CommRing.toCommMonoid
Field.toCommRing
β€”prod_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
range_val πŸ“–mathematicalβ€”AlgHom.range
IntermediateField
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
val
toSubalgebra
β€”Subalgebra.range_val
restrictScalars_inj πŸ“–mathematicalβ€”restrictScalarsβ€”restrictScalars_injective
restrictScalars_injective πŸ“–mathematicalβ€”IntermediateField
restrictScalars
β€”ext
mem_restrictScalars
restrictScalars_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
restrictScalars
Subalgebra.restrictScalars
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”SetLike.coe_injective
restrictScalars_toSubfield πŸ“–mathematicalβ€”toSubfield
restrictScalars
β€”SetLike.coe_injective
set_range_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
IntermediateField
instSetLike
β€”Subalgebra.range_subset
smulCommClass_left πŸ“–mathematicalβ€”SMulCommClass
IntermediateField
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subfield.smulCommClass_left
smulCommClass_right πŸ“–mathematicalβ€”SMulCommClass
IntermediateField
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subfield.smulCommClass_right
smul_def πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”β€”
smul_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Subalgebra.smul_mem
sub_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”sub_mem
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
sum_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”sum_mem
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
toSubalgebra_inj πŸ“–mathematicalβ€”toSubalgebraβ€”toSubalgebra_injective
toSubalgebra_injective πŸ“–mathematicalβ€”IntermediateField
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSubalgebra
β€”ext
toSubalgebra_le_toSubalgebra πŸ“–mathematicalβ€”Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
toSubalgebra
IntermediateField
instPartialOrder
β€”β€”
toSubalgebra_lt_toSubalgebra πŸ“–mathematicalβ€”Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLT
PartialOrder.toPreorder
Subalgebra.instPartialOrder
toSubalgebra
IntermediateField
instPartialOrder
β€”β€”
toSubalgebra_map πŸ“–mathematicalβ€”toSubalgebra
map
Subalgebra.map
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”β€”
toSubalgebra_strictMono πŸ“–mathematicalβ€”StrictMono
IntermediateField
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
PartialOrder.toPreorder
instPartialOrder
Subalgebra.instPartialOrder
toSubalgebra
β€”β€”
toSubfield_inj πŸ“–mathematicalβ€”toSubfieldβ€”toSubfield_injective
toSubfield_injective πŸ“–mathematicalβ€”IntermediateField
Subfield
Field.toDivisionRing
toSubfield
β€”ext
toSubfield_map πŸ“–mathematicalβ€”toSubfield
map
Subfield.map
Field.toDivisionRing
RingHomClass.toRingHom
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
Semiring.toNonAssocSemiring
DivisionRing.toDivisionSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”β€”
val_mk πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
val
β€”IsScalarTower.left
zero_mem πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
zsmul_mem πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”zsmul_mem
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass

IntermediateField.AlgHom

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

IntermediateField.extendScalars

Definitions

NameCategoryTheorems
orderIso πŸ“–CompOp
2 mathmath: orderIso_apply, orderIso_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
orderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
RelIso.instFunLike
orderIso
IntermediateField.extendScalars
β€”β€”
orderIso_symm_apply_coe πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
DFunLike.coe
RelIso
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
RelIso.instFunLike
RelIso.symm
orderIso
IntermediateField.restrictScalars
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
IntermediateField.isScalarTower_mid'
β€”β€”

Subalgebra

Definitions

NameCategoryTheorems
toIntermediateField πŸ“–CompOp
2 mathmath: toIntermediateField_toSubalgebra, toSubalgebra_toIntermediateField
toIntermediateField' πŸ“–CompOp
2 mathmath: toSubalgebra_toIntermediateField', toIntermediateField'_toSubalgebra

Subfield

Definitions

NameCategoryTheorems
extendScalars πŸ“–CompOp
14 mathmath: extendScalars_toSubfield, relfinrank_eq_finrank_of_le, extendScalars_le_extendScalars_iff, extendScalars_inf, extendScalars_top, le_extendScalars_iff, extendScalars_le_iff, extendScalars.orderIso_apply, relrank_eq_rank_of_le, extendScalars_sup, extendScalars_self, mem_extendScalars, coe_extendScalars, extendScalars_injective
toIntermediateField πŸ“–CompOp
2 mathmath: coe_toIntermediateField, toIntermediateField_toSubfield

Theorems

NameKindAssumesProvesValidatesDepends On
coe_extendScalars πŸ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
IntermediateField.instSetLike
extendScalars
β€”β€”
coe_toIntermediateField πŸ“–mathematicalSubfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
IntermediateField
IntermediateField.instSetLike
toIntermediateField
β€”β€”
extendScalars_injective πŸ“–mathematicalβ€”Subfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
extendScalars
β€”OrderIso.injective
extendScalars_le_extendScalars_iff πŸ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
IntermediateField.instPartialOrder
extendScalars
β€”β€”
extendScalars_le_iff πŸ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
IntermediateField.instPartialOrder
extendScalars
IntermediateField.toSubfield
β€”β€”
extendScalars_toSubfield πŸ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField.toSubfield
SetLike.instMembership
instSetLike
toField
toAlgebra
extendScalars
β€”SetLike.coe_injective
le_extendScalars_iff πŸ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
IntermediateField.instPartialOrder
extendScalars
IntermediateField.toSubfield
β€”β€”
mem_extendScalars πŸ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
IntermediateField.instSetLike
extendScalars
β€”β€”
toIntermediateField_toSubfield πŸ“–mathematicalSubfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
IntermediateField.toSubfield
toIntermediateField
β€”β€”

Subfield.extendScalars

Definitions

NameCategoryTheorems
orderIso πŸ“–CompOp
2 mathmath: orderIso_apply, orderIso_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
orderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Subfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
Subfield.instPartialOrder
IntermediateField
SetLike.instMembership
Subfield.instSetLike
Subfield.toField
Subfield.toAlgebra
IntermediateField.instPartialOrder
RelIso.instFunLike
orderIso
Subfield.extendScalars
β€”β€”
orderIso_symm_apply_coe πŸ“–mathematicalβ€”Subfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
Subfield.instPartialOrder
DFunLike.coe
RelIso
IntermediateField
SetLike.instMembership
Subfield.instSetLike
Subfield.toField
Subfield.toAlgebra
IntermediateField.instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIso
IntermediateField.toSubfield
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
toIntermediateField'_toSubalgebra πŸ“–mathematicalβ€”Subalgebra.toIntermediateField'
IntermediateField.toSubalgebra
Field.toIsField
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
SubfieldClass.toField
IntermediateField.instSubfieldClass
β€”IntermediateField.ext
Field.toIsField
IntermediateField.instSubfieldClass
toIntermediateField_toSubalgebra πŸ“–mathematicalβ€”Subalgebra.toIntermediateField
IntermediateField.toSubalgebra
IntermediateField.inv_mem
β€”IntermediateField.ext
IntermediateField.inv_mem
toSubalgebra_toIntermediateField πŸ“–mathematicalSubalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
IntermediateField.toSubalgebra
Subalgebra.toIntermediateField
β€”Subalgebra.ext
toSubalgebra_toIntermediateField' πŸ“–mathematicalIsField
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toSemiring
IntermediateField.toSubalgebra
Subalgebra.toIntermediateField'
β€”Subalgebra.ext

---

← Back to Index