Documentation Verification Report

Algebra

📁 Source: Mathlib/FieldTheory/IntermediateField/Adjoin/Algebra.lean

Statistics

MetricCount
DefinitionsadjoinAlgebraMapOfAlgebra, instAlgebraSubtypeMemSubalgebraAdjoinAdjoin, instAlgebraSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap
3
Theoremsadjoin_eq_top_of_intermediateField, adjoin_eq_top_of_primitive_element, finite_of_essFiniteType_of_isAlgebraic, isIntegral_gen, adjoin_algebraic_toSubalgebra, adjoin_eq_algebra_adjoin, adjoin_eq_top_iff, adjoin_eq_top_iff_of_isAlgebraic, adjoin_eq_top_of_algebra, adjoin_intermediateField_toSubalgebra_of_isAlgebraic, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right, adjoin_simple_eq_top_iff_of_isAlgebraic, adjoin_simple_toSubalgebra_of_integral, adjoin_simple_toSubalgebra_of_isAlgebraic, adjoin_toSubalgebra, adjoin_toSubalgebra_of_isAlgebraic, adjoin_toSubalgebra_of_isAlgebraic_left, adjoin_toSubalgebra_of_isAlgebraic_right, instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, algebra_adjoin_le_adjoin, eq_adjoin_of_eq_algebra_adjoin, essFiniteType_iff, fg_of_fg_toSubalgebra, fg_of_noetherian, fg_top, fg_top_iff, finite_of_fg_of_isAlgebraic, induction_on_adjoin, instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, le_sup_toSubalgebra, sup_toSubalgebra_of_isAlgebraic, sup_toSubalgebra_of_isAlgebraic_left, sup_toSubalgebra_of_isAlgebraic_right, sup_toSubalgebra_of_left, sup_toSubalgebra_of_right, algHom_fieldRange_eq_of_comp_eq, algHom_fieldRange_eq_of_comp_eq_of_range_eq, liftAlgHom_fieldRange, liftAlgHom_fieldRange_eq_of_range_eq
44
Total47

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_top_of_intermediateField 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra
instCompleteLatticeSubalgebra
IntermediateField.adjoin_eq_top_iff_of_isAlgebraic
adjoin_eq_top_of_primitive_element 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra
instCompleteLatticeSubalgebra
IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic
finite_of_essFiniteType_of_isAlgebraic 📖mathematicalModule.Finite
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toModule
Semifield.toCommSemiring
IntermediateField.fg_top
IntermediateField.adjoin_toSubalgebra_of_isAlgebraic
IsAlgebraic.isAlgebraic
IntermediateField.adjoin_toSubalgebra
IsIntegral.finite
IsAlgebraic.isIntegral

IntermediateField

Definitions

NameCategoryTheorems
instAlgebraSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap 📖CompOp
1 mathmath: instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_algebraic_toSubalgebra 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toSubalgebra
adjoin
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_toSubalgebra_of_isAlgebraic
adjoin_eq_algebra_adjoin 📖mathematicalSubalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
toSubalgebra
adjoin
le_antisymm
adjoin_le_iff
Algebra.subset_adjoin
algebra_adjoin_le_adjoin
adjoin_eq_top_iff 📖mathematicaladjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra
Algebra.instCompleteLatticeSubalgebra
adjoin_eq_top_iff_of_isAlgebraic
Algebra.IsAlgebraic.isAlgebraic
adjoin_eq_top_iff_of_isAlgebraic 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra
Algebra.instCompleteLatticeSubalgebra
adjoin_toSubalgebra_of_isAlgebraic
top_toSubalgebra
adjoin_eq_top_of_algebra 📖mathematicalAlgebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
adjoin
IntermediateField
instCompleteLattice
top_le_iff
Eq.trans_le
algebra_adjoin_le_adjoin
adjoin_intermediateField_toSubalgebra_of_isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
toSubalgebra
adjoin
SetLike.coe
Algebra.adjoin
IsScalarTower.left
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Subalgebra.restrictScalars_injective
restrictScalars_toSubalgebra
isScalarTower_mid'
restrictScalars_adjoin_of_algEquiv
Algebra.restrictScalars_adjoin_of_algEquiv
restrictScalars_adjoin
IsScalarTower.subalgebra'
IsScalarTower.right
Algebra.restrictScalars_adjoin
sup_toSubalgebra_of_isAlgebraic
AlgEquiv.isAlgebraic
adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left 📖mathematicaltoSubalgebra
adjoin
SetLike.coe
IntermediateField
instSetLike
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_intermediateField_toSubalgebra_of_isAlgebraic
IsScalarTower.left
adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right 📖mathematicaltoSubalgebra
adjoin
SetLike.coe
IntermediateField
instSetLike
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IsScalarTower.left
adjoin_intermediateField_toSubalgebra_of_isAlgebraic
adjoin_simple_eq_top_iff_of_isAlgebraic 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra
Algebra.instCompleteLatticeSubalgebra
adjoin_eq_top_iff_of_isAlgebraic
adjoin_simple_toSubalgebra_of_integral 📖mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toSubalgebra
adjoin
Set
Set.instSingletonSet
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_toSubalgebra_of_isAlgebraic
adjoin_simple_toSubalgebra_of_isAlgebraic 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toSubalgebra
adjoin
Set
Set.instSingletonSet
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_toSubalgebra_of_isAlgebraic
adjoin_toSubalgebra 📖mathematicaltoSubalgebra
adjoin
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_toSubalgebra_of_isAlgebraic
Algebra.IsAlgebraic.isAlgebraic
adjoin_toSubalgebra_of_isAlgebraic 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toSubalgebra
adjoin
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_eq_algebra_adjoin
Algebra.IsIntegral.inv_mem
Algebra.IsIntegral.adjoin
IsAlgebraic.isIntegral
adjoin_toSubalgebra_of_isAlgebraic_left 📖mathematicaltoSubalgebra
adjoin
SetLike.coe
IntermediateField
instSetLike
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left
adjoin_toSubalgebra_of_isAlgebraic_right 📖mathematicaltoSubalgebra
adjoin
SetLike.coe
IntermediateField
instSetLike
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right
algebra_adjoin_le_adjoin 📖mathematicalSubalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Algebra.adjoin
toSubalgebra
adjoin
Algebra.adjoin_le
subset_adjoin
eq_adjoin_of_eq_algebra_adjoin 📖mathematicaltoSubalgebra
Algebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
adjointoSubalgebra_injective
adjoin_eq_algebra_adjoin
inv_mem
essFiniteType_iff 📖mathematicalAlgebra.EssFiniteType
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
FG
subset_adjoin
IsScalarTower.left
map_injective
adjoin_map
Set.image_congr
fieldRange_val
Equiv.exists_congr_left
Finset.coe_map
Finset.coe_attach
Set.image_univ
Subtype.range_coe_subtype
fg_of_fg_toSubalgebra 📖mathematicalSubalgebra.FG
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSubalgebra
FGeq_adjoin_of_eq_algebra_adjoin
fg_of_noetherian 📖mathematicalFGfg_of_fg_toSubalgebra
Subalgebra.fg_of_noetherian
fg_top 📖mathematicalFG
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
fg_top_iff
fg_top_iff 📖mathematicalFG
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.EssFiniteType
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.FiniteType.adjoin_of_finite
Finset.finite_toSet
Algebra.EssFiniteType.of_isLocalization
algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin
IsScalarTower.left
Algebra.EssFiniteType.comp
algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin
Algebra.EssFiniteType.of_finiteType
Algebra.EssFiniteType.of_surjective
AlgEquiv.surjective
top_le_iff
Algebra.EssFiniteType.isLocalization
IsLocalization.exists_mk'_eq
IsUnit.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsLocalization.map_units
IsUnit.div_mul_cancel
div_mem
SubfieldClass.toSubgroupClass
instSubfieldClass
algebra_adjoin_le_adjoin
finite_of_fg_of_isAlgebraic 📖mathematicalModule.Finite
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Algebra.finite_of_essFiniteType_of_isAlgebraic
induction_on_adjoin 📖Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
restrictScalars
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
adjoin
Set
Set.instSingletonSet
IsScalarTower.left
isScalarTower_mid'
induction_on_adjoin_fg
fg_of_noetherian
IsNoetherian.iff_fg
instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap 📖mathematicalIsScalarTower
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
IntermediateField
instSetLike
adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Algebra.toSMul
Polynomial.instCommSemiringAdjoinSingleton
toField
instAlgebraSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap
instSMulSubtypeMem
Algebra.id
Subalgebra.instSMulSubtypeMem
IsScalarTower.of_algebraMap_eq'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
le_sup_toSubalgebra 📖mathematicalSubalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
toSubalgebra
IntermediateField
instCompleteLattice
sup_le
le_sup_left
le_sup_right
sup_toSubalgebra_of_isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
toSubalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Algebra.instCompleteLatticeSubalgebra
IsScalarTower.left
sup_toSubalgebra_of_isAlgebraic_left
sup_toSubalgebra_of_isAlgebraic_right
sup_toSubalgebra_of_isAlgebraic_left 📖mathematicaltoSubalgebra
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
IsScalarTower.left
sup_toSubalgebra_of_isAlgebraic_right
sup_comm
sup_toSubalgebra_of_isAlgebraic_right 📖mathematicaltoSubalgebra
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
IsScalarTower.left
adjoin_toSubalgebra_of_isAlgebraic
IsAlgebraic.tower_top
isScalarTower_mid'
isAlgebraic_iff
Algebra.IsAlgebraic.isAlgebraic
IsScalarTower.subalgebra'
IsScalarTower.right
Algebra.restrictScalars_adjoin
restrictScalars_adjoin
restrictScalars_toSubalgebra
sup_toSubalgebra_of_left 📖mathematicaltoSubalgebra
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
IsScalarTower.left
sup_toSubalgebra_of_isAlgebraic_left
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
sup_toSubalgebra_of_right 📖mathematicaltoSubalgebra
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
IsScalarTower.left
sup_toSubalgebra_of_isAlgebraic_right
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing

IntermediateField.AdjoinSimple

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegral_gen 📖mathematicalIsIntegral
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
gen
IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
algebraMap_gen
isIntegral_algebraMap_iff
IntermediateField.isScalarTower_mid'
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing

IntermediateField.RingHom

Definitions

NameCategoryTheorems
adjoinAlgebraMapOfAlgebra 📖CompOp

IntermediateField.algebraAdjoinAdjoin

Definitions

NameCategoryTheorems
instAlgebraSubtypeMemSubalgebraAdjoinAdjoin 📖CompOp
5 mathmath: instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin 📖mathematicalFaithfulSMul
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
IntermediateField
IntermediateField.instSetLike
IntermediateField.adjoin
Algebra.toSMul
Subalgebra.toCommSemiring
IntermediateField.toField
instAlgebraSubtypeMemSubalgebraAdjoinAdjoin
Subalgebra.inclusion.faithfulSMul
IntermediateField.algebra_adjoin_le_adjoin
instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin 📖mathematicalAlgebra.IsAlgebraic
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
IntermediateField
IntermediateField.instSetLike
IntermediateField.adjoin
Subalgebra.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
instAlgebraSubtypeMemSubalgebraAdjoinAdjoin
IsLocalization.isAlgebraic
SubsemiringClass.nontrivial
Subalgebra.instSubsemiringClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin
instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin 📖mathematicalIsFractionRing
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Subalgebra.toCommSemiring
IntermediateField
IntermediateField.instSetLike
IntermediateField.adjoin
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
instAlgebraSubtypeMemSubalgebraAdjoinAdjoin
IsFractionRing.of_field
instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin
IntermediateField.mem_adjoin_iff_div
instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin 📖mathematicalIsScalarTower
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
IntermediateField
IntermediateField.instSetLike
IntermediateField.adjoin
SetLike.smul'
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Subalgebra.instSMulMemClass
Algebra.toSMul
Subalgebra.toCommSemiring
IntermediateField.toField
instAlgebraSubtypeMemSubalgebraAdjoinAdjoin
IntermediateField.instSMulMemClass
Subalgebra.inclusion.isScalarTower_left
IntermediateField.algebra_adjoin_le_adjoin
instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1 📖mathematicalIsScalarTower
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
IntermediateField
IntermediateField.instSetLike
IntermediateField.adjoin
Algebra.toSMul
Subalgebra.toCommSemiring
IntermediateField.toField
instAlgebraSubtypeMemSubalgebraAdjoinAdjoin
IntermediateField.instSMulSubtypeMem
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
Subalgebra.instSMulSubtypeMem
Subalgebra.inclusion.isScalarTower_right
IntermediateField.algebra_adjoin_le_adjoin

IsFractionRing

Theorems

NameKindAssumesProvesValidatesDepends On
algHom_fieldRange_eq_of_comp_eq 📖mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHomClass.toRingHom
AlgHom
Semifield.toCommSemiring
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
algebraMap
AlgHom.fieldRange
IntermediateField.adjoin
SetLike.coe
Subalgebra
Subalgebra.instSetLike
AlgHom.range
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IntermediateField.toSubfield_injective
Set.union_eq_self_of_subset_left
AlgHom.commutes
ringHom_fieldRange_eq_of_comp_eq
algHom_fieldRange_eq_of_comp_eq_of_range_eq 📖mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHomClass.toRingHom
AlgHom
Semifield.toCommSemiring
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
algebraMap
AlgHom.range
Algebra.adjoin
AlgHom.fieldRange
IntermediateField.adjoin
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IntermediateField.toSubfield_injective
ringHom_fieldRange_eq_of_comp_eq_of_range_eq
Algebra.adjoin_eq_ring_closure
liftAlgHom_fieldRange 📖mathematicalDFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
AlgHom.fieldRange
liftAlgHom
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.adjoin
SetLike.coe
Subalgebra
Subalgebra.instSetLike
AlgHom.range
algHom_fieldRange_eq_of_comp_eq
RingHom.ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
lift_algebraMap
liftAlgHom_fieldRange_eq_of_range_eq 📖mathematicalDFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
AlgHom.range
Algebra.adjoin
AlgHom.fieldRange
liftAlgHom
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.adjoin
algHom_fieldRange_eq_of_comp_eq_of_range_eq
RingHom.ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
lift_algebraMap

---

← Back to Index