Documentation

Mathlib.FieldTheory.IntermediateField.Adjoin.Algebra

Adjoining Elements to Fields #

This file relates IntermediateField.adjoin to Algebra.adjoin.

@[simp]
theorem IntermediateField.AdjoinSimple.isIntegral_gen (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] (ฮฑ : E) :
IsIntegral F (gen F ฮฑ) โ†” IsIntegral F ฮฑ
theorem IntermediateField.adjoin_toSubalgebra_of_isAlgebraic {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {S : Set E} (hS : โˆ€ x โˆˆ S, IsAlgebraic F x) :
@[deprecated IntermediateField.adjoin_toSubalgebra_of_isAlgebraic (since := "2025-11-24")]
theorem IntermediateField.adjoin_algebraic_toSubalgebra {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {S : Set E} (hS : โˆ€ x โˆˆ S, IsAlgebraic F x) :

Alias of IntermediateField.adjoin_toSubalgebra_of_isAlgebraic.

theorem IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {ฮฑ : E} (hฮฑ : IsAlgebraic F ฮฑ) :
FโŸฎฮฑโŸฏ.toSubalgebra = Algebra.adjoin F {ฮฑ}
@[deprecated "Use `adjoin_simple_toSubalgebra_of_isAlgebraic` instead" (since := "2025-11-24")]
theorem IntermediateField.adjoin_simple_toSubalgebra_of_integral {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {ฮฑ : E} (hฮฑ : IsIntegral F ฮฑ) :
FโŸฎฮฑโŸฏ.toSubalgebra = Algebra.adjoin F {ฮฑ}
theorem IntermediateField.adjoin_eq_top_iff_of_isAlgebraic {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {S : Set E} (hS : โˆ€ x โˆˆ S, IsAlgebraic F x) :
theorem Algebra.adjoin_eq_top_of_intermediateField {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {S : Set E} (hS : โˆ€ x โˆˆ S, IsAlgebraic F x) :

Alias of the forward direction of IntermediateField.adjoin_eq_top_iff_of_isAlgebraic.

theorem Algebra.adjoin_eq_top_of_primitive_element {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {x : E} (hx : IsAlgebraic F x) :
FโŸฎxโŸฏ = โŠค โ†’ adjoin F {x} = โŠค

Alias of the forward direction of IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic.

@[deprecated Algebra.finite_of_essFiniteType_of_isAlgebraic (since := "2025-12-08")]

Alias of Algebra.finite_of_essFiniteType_of_isAlgebraic.

noncomputable def IntermediateField.RingHom.adjoinAlgebraMapOfAlgebra {A : Type u_3} {B : Type u_4} {C : Type u_5} [Field A] [CommSemiring B] [Field C] [Algebra A B] [Algebra B C] [Algebra A C] [IsScalarTower A B C] (b : B) :
โ†ฅ(Algebra.adjoin A {b}) โ†’+* โ†ฅAโŸฎ(algebraMap B C) bโŸฏ

Ring homomorphism between A[b] and AโŸฎโ†‘bโŸฏ.

Equations
    Instances For
      noncomputable instance IntermediateField.instAlgebraSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap {A : Type u_3} {B : Type u_4} {C : Type u_5} [Field A] [CommSemiring B] [Field C] [Algebra A B] [Algebra B C] [Algebra A C] [IsScalarTower A B C] (b : B) :
      Algebra โ†ฅ(Algebra.adjoin A {b}) โ†ฅAโŸฎ(algebraMap B C) bโŸฏ
      Equations
        instance IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap {A : Type u_3} {B : Type u_4} {C : Type u_5} [Field A] [CommSemiring B] [Field C] [Algebra A B] [Algebra B C] [Algebra A C] [IsScalarTower A B C] (b : B) :
        IsScalarTower (โ†ฅ(Algebra.adjoin A {b})) (โ†ฅAโŸฎ(algebraMap B C) bโŸฏ) C
        theorem IntermediateField.le_sup_toSubalgebra {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) :
        E1.toSubalgebra โŠ” E2.toSubalgebra โ‰ค (E1 โŠ” E2).toSubalgebra
        theorem IntermediateField.sup_toSubalgebra_of_isAlgebraic {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) (halg : Algebra.IsAlgebraic K โ†ฅE1 โˆจ Algebra.IsAlgebraic K โ†ฅE2) :
        (E1 โŠ” E2).toSubalgebra = E1.toSubalgebra โŠ” E2.toSubalgebra

        The compositum of two intermediate fields is equal to the compositum of them as subalgebras, if one of them is algebraic over the base field.

        theorem IntermediateField.sup_toSubalgebra_of_left {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [FiniteDimensional K โ†ฅE1] :
        (E1 โŠ” E2).toSubalgebra = E1.toSubalgebra โŠ” E2.toSubalgebra
        theorem IntermediateField.sup_toSubalgebra_of_right {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [FiniteDimensional K โ†ฅE2] :
        (E1 โŠ” E2).toSubalgebra = E1.toSubalgebra โŠ” E2.toSubalgebra
        theorem IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic {F : Type u_1} [Field F] (E : Type u_2) [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (L : IntermediateField F K) (halg : Algebra.IsAlgebraic F E โˆจ Algebra.IsAlgebraic F โ†ฅL) :
        (adjoin E โ†‘L).toSubalgebra = Algebra.adjoin E โ†‘L

        If K / E / F is a field extension tower, L is an intermediate field of K / F, such that either E / F or L / F is algebraic, then E(L) = E[L].

        @[deprecated IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left (since := "2025-11-24")]
        theorem IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_left {F : Type u_1} [Field F] (E : Type u_2) [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (L : IntermediateField F K) [halg : Algebra.IsAlgebraic F E] :
        (adjoin E โ†‘L).toSubalgebra = Algebra.adjoin E โ†‘L

        Alias of IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left.

        @[deprecated IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right (since := "2025-11-24")]
        theorem IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_right {F : Type u_1} [Field F] (E : Type u_2) [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (L : IntermediateField F K) [halg : Algebra.IsAlgebraic F โ†ฅL] :
        (adjoin E โ†‘L).toSubalgebra = Algebra.adjoin E โ†‘L

        Alias of IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right.

        theorem IntermediateField.fg_of_fg_toSubalgebra {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : IntermediateField F E) (h : S.FG) :
        S.FG
        theorem IntermediateField.induction_on_adjoin {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] (P : IntermediateField F E โ†’ Prop) (base : P โŠฅ) (ih : โˆ€ (K : IntermediateField F E) (x : E), P K โ†’ P (restrictScalars F (โ†ฅK)โŸฎxโŸฏ)) (K : IntermediateField F E) :
        P K
        theorem IsFractionRing.algHom_fieldRange_eq_of_comp_eq {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A โ†’โ‚[F] L} {f : K โ†’โ‚[F] L} (h : (โ†‘f).comp (algebraMap A K) = โ†‘g) :

        If F is a field, A is an F-algebra with fraction field K, L is a field, g : A โ†’โ‚[F] L lifts to f : K โ†’โ‚[F] L, then the image of f is the field generated by the image of g. Note: this does not require IsScalarTower F A K.

        theorem IsFractionRing.algHom_fieldRange_eq_of_comp_eq_of_range_eq {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A โ†’โ‚[F] L} {f : K โ†’โ‚[F] L} (h : (โ†‘f).comp (algebraMap A K) = โ†‘g) {s : Set L} (hs : g.range = Algebra.adjoin F s) :

        If F is a field, A is an F-algebra with fraction field K, L is a field, g : A โ†’โ‚[F] L lifts to f : K โ†’โ‚[F] L, s is a set such that the image of g is the subalgebra generated by s, then the image of f is the intermediate field generated by s. Note: this does not require IsScalarTower F A K.

        theorem IsFractionRing.liftAlgHom_fieldRange {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A โ†’โ‚[F] L} [IsScalarTower F A K] (hg : Function.Injective โ‡‘g) :

        The image of IsFractionRing.liftAlgHom is the intermediate field generated by the image of the algebra hom.

        theorem IsFractionRing.liftAlgHom_fieldRange_eq_of_range_eq {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A โ†’โ‚[F] L} [IsScalarTower F A K] (hg : Function.Injective โ‡‘g) {s : Set L} (hs : g.range = Algebra.adjoin F s) :

        The image of IsFractionRing.liftAlgHom is the intermediate field generated by s, if the image of the algebra hom is the subalgebra generated by s.