Documentation Verification Report

TriangleInequality

📁 Source: Mathlib/Geometry/Euclidean/Angle/Unoriented/TriangleInequality.lean

Statistics

MetricCount
Definitions0
Theoremsangle_le_angle_add_angle, angle_eq_angle_add_add_angle_add_of_mem_span, angle_eq_angle_add_angle_iff, angle_le_angle_add_angle
4
Total4

EuclideanGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
angle_le_angle_add_angle 📖mathematicalReal
Real.instLE
angle
Real.instAdd
InnerProductGeometry.angle_le_angle_add_angle

InnerProductGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
angle_eq_angle_add_add_angle_add_of_mem_span 📖mathematicalSubmodule
NNReal
instSemiringNNReal
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NNReal.instModuleOfReal
NormedSpace.toModule
Real
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instInsert
Set.instSingletonSet
angle
Real.instAdd
Submodule.mem_span_pair
LE.le.eq_or_lt
zero_le
NNReal.instCanonicallyOrderedAdd
zero_smul
add_zero
zero_add
angle_smul_right_of_pos
angle_smul_left_of_pos
angle_self
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Real.instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
angle_comm
angle_eq_angle_add_add_angle_add
smul_ne_zero
instIsDomain
LT.lt.ne'
smul_zero
add_comm
angle_eq_angle_add_angle_iff 📖mathematicalangle
Real
Real.instAdd
Real.pi
Submodule
NNReal
instSemiringNNReal
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NNReal.instModuleOfReal
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instInsert
Set.instSingletonSet
angle_eq_zero_iff
CanLift.prf
NNReal.canLift
LT.lt.le
Submodule.smul_mem
Submodule.mem_span_of_mem
Nat.instAtLeastTwoHAddOfNat
angle_zero_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.smul_def
Submodule.span_insert_zero
Submodule.span_singleton_smul_eq
Nat.cast_zero
angle_zero_right
AddRightCancelSemigroup.toIsRightCancelAdd
NormedSpace.norm_normalize_eq_one_iff
angle_normalize_right
angle_normalize_left
IsScalarTower.left
angle_eq_angle_add_add_angle_add_of_mem_span
angle_le_angle_add_angle 📖mathematicalReal
Real.instLE
angle
Real.instAdd
Nat.instAtLeastTwoHAddOfNat
angle_zero_left
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
angle_nonneg
angle_zero_right
add_halves
ZeroLEOneClass.neZero.two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
angle_le_pi
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
angle_normalize_right
angle_normalize_left
NormedSpace.norm_normalize_eq_one_iff

---

← Back to Index