The Triangle Inequality for Angles #
This file contains the proof that angles obey the triangle inequality.
theorem
InnerProductGeometry.angle_le_angle_add_angle
{V : Type u_1}
[NormedAddCommGroup V]
[InnerProductSpace ā V]
(x y z : V)
:
Triangle inequality for angles between vectors.
theorem
InnerProductGeometry.angle_eq_angle_add_add_angle_add_of_mem_span
{V : Type u_1}
[NormedAddCommGroup V]
[InnerProductSpace ā V]
{x y z : V}
(hy : y ā 0)
(h_mem : y ā Submodule.span NNReal {x, z})
:
The triangle inequality is an equality if the middle vector is a nonnegative linear combination
of the other two vectors. See angle_add_angle_eq_pi_of_angle_eq_pi for the other equality case.
theorem
InnerProductGeometry.angle_eq_angle_add_angle_iff
{V : Type u_1}
[NormedAddCommGroup V]
[InnerProductSpace ā V]
{x y z : V}
(hy : y ā 0)
:
The triangle inequality on vectors x, y, z is an equality if and only if
angle x z = Ļ, or y is a nonnegative linear combination of x and z.
theorem
EuclideanGeometry.angle_le_angle_add_angle
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ā V]
[MetricSpace P]
[NormedAddTorsor V P]
(p pā pā pā : P)
:
Triangle inequality for angles in Euclidean geometry.