Documentation Verification Report

CommutingProbability

πŸ“ Source: Mathlib/GroupTheory/CommutingProbability.lean

Statistics

MetricCount
DefinitionsreciprocalFactors, commProb
2
TheoremscommProb_cons, commProb_nil, commProb_odd, commProb_reciprocal, reciprocalFactors_even, reciprocalFactors_odd, reciprocalFactors_one, reciprocalFactors_zero, commProb_quotient_le, commProb_subgroup_le, commProb_def, commProb_def', commProb_eq_one_iff, commProb_eq_zero_of_infinite, commProb_function, commProb_le_one, commProb_pi, commProb_pos, commProb_prod, inv_card_commutator_le_commProb
20
Total22

DihedralGroup

Definitions

NameCategoryTheorems
reciprocalFactors πŸ“–CompOp
5 mathmath: reciprocalFactors_one, reciprocalFactors_zero, reciprocalFactors_odd, reciprocalFactors_even, commProb_reciprocal

Theorems

NameKindAssumesProvesValidatesDepends On
commProb_cons πŸ“–mathematicalβ€”commProb
Product
Pi.instMul
DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”commProb_pi
Finset.prod_congr
Fin.prod_univ_succ
commProb_nil πŸ“–mathematicalβ€”commProb
Product
Pi.instMul
DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”commProb_pi
Finset.prod_congr
Finset.univ_eq_empty
Fin.isEmpty'
commProb_odd πŸ“–mathematicalOdd
Nat.instSemiring
commProb
DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”commProb_def'
card_conjClasses_odd
nat_card
Nat.instAtLeastTwoHAddOfNat
Nat.cast_div_charZero
Rat.instCharZero
Nat.odd_iff
Nat.cast_add
Nat.cast_mul
div_div
mul_assoc
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
commProb_reciprocal πŸ“–mathematicalβ€”commProb
Product
reciprocalFactors
Pi.instMul
DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”reciprocalFactors_zero
commProb_cons
commProb_nil
mul_one
Nat.cast_zero
div_zero
commProb_eq_zero_of_infinite
instInfiniteOfNatNat
reciprocalFactors_one
Nat.cast_one
div_one
Nat.even_or_odd
reciprocalFactors_even
commProb_odd
Nat.instAtLeastTwoHAddOfNat
Nat.cast_div
Even.two_dvd
Rat.instCharZero
one_div
inv_div
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Nat.cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.charZero_one
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_add
reciprocalFactors_odd
Odd.mul
div_mul_div_comm
div_eq_div_iff
LT.lt.ne'
Odd.pos
Nat.instNontrivial
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
reciprocalFactors_even πŸ“–mathematicalEvenreciprocalFactorsβ€”reciprocalFactors.eq_1
reciprocalFactors_odd πŸ“–mathematicalOdd
Nat.instSemiring
reciprocalFactorsβ€”reciprocalFactors.eq_1
Nat.not_even_iff_odd
reciprocalFactors_one πŸ“–mathematicalβ€”reciprocalFactorsβ€”reciprocalFactors.eq_def
reciprocalFactors_zero πŸ“–mathematicalβ€”reciprocalFactorsβ€”reciprocalFactors.eq_def

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
commProb_quotient_le πŸ“–mathematicalβ€”commProb
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
Nat.card
SetLike.instMembership
instSetLike
β€”commProb_def'
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
Finite.card_pos
finite_quotient_of_finiteIndex
finiteIndex_of_finite
mul_assoc
Nat.cast_mul
index.eq_1
card_mul_index
div_mul_cancelβ‚€
Nat.cast_ne_zero
Rat.instCharZero
LT.lt.ne'
One.instNonempty
Nat.cast_le
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Nat.card_le_card_of_surjective
instFiniteConjClasses
ConjClasses.map_surjective
Quotient.mk''_surjective
commProb_subgroup_le πŸ“–mathematicalβ€”commProb
Subgroup
SetLike.instMembership
instSetLike
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toNatPow
Rat.monoid
index
β€”commProb_def
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Rat.instZeroLEOneClass
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
Finite.card_pos
instFiniteSubtypeMem
One.instNonempty
mul_assoc
mul_pow
Nat.cast_mul
mul_comm
card_mul_index
div_mul_cancelβ‚€
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
Nat.cast_ne_zero
Rat.instCharZero
LT.lt.ne'
Nat.cast_le
Rat.instAddLeftMono
Nat.card_le_card_of_injective
Subtype.finite
Finite.instProd

(root)

Definitions

NameCategoryTheorems
commProb πŸ“–CompOp
16 mathmath: commProb_pos, DihedralGroup.commProb_nil, commProb_eq_zero_of_infinite, commProb_eq_one_iff, commProb_prod, commProb_pi, commProb_function, Subgroup.commProb_subgroup_le, commProb_le_one, DihedralGroup.commProb_odd, commProb_def', Subgroup.commProb_quotient_le, commProb_def, inv_card_commutator_le_commProb, DihedralGroup.commProb_cons, DihedralGroup.commProb_reciprocal

Theorems

NameKindAssumesProvesValidatesDepends On
commProb_def πŸ“–mathematicalβ€”commProb
Nat.card
Commute
Monoid.toNatPow
Rat.monoid
β€”β€”
commProb_def' πŸ“–mathematicalβ€”commProb
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
ConjClasses
β€”commProb.eq_1
card_comm_eq_card_conjClasses_mul_card
Nat.cast_mul
sq
MulZeroClass.zero_mul
div_zero
mul_div_mul_right
commProb_eq_one_iff πŸ“–mathematicalβ€”commProbβ€”commProb.eq_1
Set.coe_setOf
Nat.card_eq_fintype_card
div_eq_one_iff_eq
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Rat.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Nat.cast_ne_zero
Rat.instCharZero
Fintype.card_ne_zero
Nat.cast_pow
sq
Fintype.card_prod
set_fintype_card_eq_univ_iff
Set.eq_univ_iff_forall
commProb_eq_zero_of_infinite πŸ“–mathematicalβ€”commProbβ€”div_eq_zero_iff
Nat.cast_eq_zero
Rat.instCharZero
Nat.card_eq_zero_of_infinite
instInfiniteProdSubtypeCommute
commProb_function πŸ“–mathematicalβ€”commProb
Pi.instMul
Fintype.card
β€”commProb_pi
Finset.prod_const
Finset.card_univ
commProb_le_one πŸ“–mathematicalβ€”commProbβ€”div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
Rat.instZeroLEOneClass
Nat.cast_pow
Nat.cast_le
Rat.instAddLeftMono
Rat.instCharZero
sq
Nat.card_prod
Finite.card_subtype_le
Finite.instProd
sq_nonneg
AddGroup.existsAddOfLE
Rat.instPosMulMono
commProb_pi πŸ“–mathematicalβ€”commProb
Pi.instMul
Finset.prod
Rat.commMonoid
Finset.univ
β€”Finset.prod_congr
Finset.prod_div_distrib
Finset.prod_pow
Nat.card_congr
commProb_pos πŸ“–mathematicalβ€”commProbβ€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
Finite.card_pos_iff
Subtype.finite
Finite.instProd
pow_pos
Rat.instZeroLEOneClass
Finite.card_pos
commProb_prod πŸ“–mathematicalβ€”commProb
Prod.instMul
β€”div_mul_div_comm
Nat.card_prod
Nat.cast_mul
mul_pow
Nat.card_congr
inv_card_commutator_le_commProb πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
commutator
commProb
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”inv_le_iff_one_le_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
Finite.card_pos
Subgroup.instFiniteSubtypeMem
One.instNonempty
le_trans
ge_of_eq
commProb_eq_one_iff
instFiniteAbelianization
CommGroup.mul_comm
Subgroup.commProb_quotient_le

---

← Back to Index