Documentation

Mathlib.GroupTheory.CommutingProbability

Commuting Probability #

This file introduces the commuting probability of finite groups.

Main definitions #

TODO #

def commProb (M : Type u_1) [Mul M] :

The commuting probability of a finite type with a multiplication operation.

Equations
    Instances For
      theorem commProb_def (M : Type u_1) [Mul M] :
      commProb M = โ†‘(Nat.card { p : M ร— M // Commute p.1 p.2 }) / โ†‘(Nat.card M) ^ 2
      theorem commProb_prod (M : Type u_1) [Mul M] (M' : Type u_2) [Mul M'] :
      theorem commProb_pi {ฮฑ : Type u_2} (i : ฮฑ โ†’ Type u_3) [Fintype ฮฑ] [(a : ฮฑ) โ†’ Mul (i a)] :
      commProb ((a : ฮฑ) โ†’ i a) = โˆ a : ฮฑ, commProb (i a)
      theorem commProb_function {ฮฑ : Type u_2} {ฮฒ : Type u_3} [Fintype ฮฑ] [Mul ฮฒ] :
      commProb (ฮฑ โ†’ ฮฒ) = commProb ฮฒ ^ Fintype.card ฮฑ
      theorem commProb_pos (M : Type u_1) [Mul M] [Finite M] [h : Nonempty M] :
      theorem commProb_eq_one_iff {M : Type u_1} [Mul M] [Finite M] [h : Nonempty M] :
      commProb M = 1 โ†” Std.Commutative fun (x1 x2 : M) => x1 * x2
      theorem commProb_def' (G : Type u_2) [Group G] :
      commProb G = โ†‘(Nat.card (ConjClasses G)) / โ†‘(Nat.card G)
      theorem DihedralGroup.commProb_odd {n : โ„•} (hn : Odd n) :
      commProb (DihedralGroup n) = (โ†‘n + 3) / (4 * โ†‘n)
      @[irreducible]

      A list of Dihedral groups whose product will have commuting probability 1 / n.

      Equations
        Instances For
          @[reducible, inline]

          A finite product of Dihedral groups.

          Equations
            Instances For
              @[irreducible]

              Construction of a group with commuting probability 1 / n.