Documentation

Mathlib.GroupTheory.SpecificGroups.Dihedral

Dihedral Groups #

We define the dihedral groups DihedralGroup n, with elements r i and sr i for i : ZMod n.

For n โ‰  0, DihedralGroup n represents the symmetry group of the regular n-gon. r i represents the rotations of the n-gon by 2ฯ€i/n, and sr i represents the reflections of the n-gon. DihedralGroup 0 corresponds to the infinite dihedral group.

inductive DihedralGroup (n : โ„•) :

For n โ‰  0, DihedralGroup n represents the symmetry group of the regular n-gon. r i represents the rotations of the n-gon by 2ฯ€i/n, and sr i represents the reflections of the n-gon. DihedralGroup 0 corresponds to the infinite dihedral group.

Instances For
    def instDecidableEqDihedralGroup.decEq {nโœ : โ„•} (xโœ xโœยน : DihedralGroup nโœ) :
    Decidable (xโœ = xโœยน)
    Equations
      Instances For

        The group structure on DihedralGroup n.

        Equations
          @[simp]
          theorem DihedralGroup.r_mul_r {n : โ„•} (i j : ZMod n) :
          r i * r j = r (i + j)
          @[simp]
          theorem DihedralGroup.r_mul_sr {n : โ„•} (i j : ZMod n) :
          r i * sr j = sr (j - i)
          @[simp]
          theorem DihedralGroup.sr_mul_r {n : โ„•} (i j : ZMod n) :
          sr i * r j = sr (i + j)
          @[simp]
          theorem DihedralGroup.sr_mul_sr {n : โ„•} (i j : ZMod n) :
          sr i * sr j = r (j - i)
          @[simp]
          theorem DihedralGroup.r_pow {n : โ„•} (i : ZMod n) (k : โ„•) :
          r i ^ k = r (i * โ†‘k)
          @[simp]
          theorem DihedralGroup.r_zpow {n : โ„•} (i : ZMod n) (k : โ„ค) :
          r i ^ k = r (i * โ†‘k)

          If 0 < n, then DihedralGroup n is a finite group.

          Equations

            If 0 < n, then DihedralGroup n has 2n elements.

            @[simp]
            theorem DihedralGroup.orderOf_sr {n : โ„•} (i : ZMod n) :
            orderOf (sr i) = 2

            sr i has order 2.

            @[simp]

            r 1 has order n.

            theorem DihedralGroup.orderOf_r {n : โ„•} [NeZero n] (i : ZMod n) :
            orderOf (r i) = n / n.gcd i.val

            If 0 < n, then r i has order n / gcd n i.

            If n is odd, then the Dihedral group of order $2n$ has $n(n+3)$ pairs (represented as $n + n + n + n*n$) of commuting elements.

            Equations
              Instances For
                @[simp]
                theorem DihedralGroup.oddCommuteEquiv_symm_apply {n : โ„•} (hn : Odd n) (xโœ : ZMod n โŠ• ZMod n โŠ• ZMod n โŠ• ZMod n ร— ZMod n) :
                (oddCommuteEquiv hn).symm xโœ = match xโœ with | Sum.inl i => โŸจ(sr i, r 0), โ‹ฏโŸฉ | Sum.inr (Sum.inl j) => โŸจ(r 0, sr j), โ‹ฏโŸฉ | Sum.inr (Sum.inr (Sum.inl k)) => โŸจ(sr (โ†‘(ZMod.unitOfCoprime 2 โ‹ฏ)โปยน * k), sr (โ†‘(ZMod.unitOfCoprime 2 โ‹ฏ)โปยน * k)), โ‹ฏโŸฉ | Sum.inr (Sum.inr (Sum.inr (i, j))) => โŸจ(r i, r j), โ‹ฏโŸฉ
                @[simp]
                theorem DihedralGroup.oddCommuteEquiv_apply {n : โ„•} (hn : Odd n) (xโœ : { p : DihedralGroup n ร— DihedralGroup n // Commute p.1 p.2 }) :
                (oddCommuteEquiv hn) xโœ = match xโœ with | โŸจ(sr i, r a), propertyโŸฉ => Sum.inl i | โŸจ(r a, sr j), propertyโŸฉ => Sum.inr (Sum.inl j) | โŸจ(sr i, sr j), propertyโŸฉ => Sum.inr (Sum.inr (Sum.inl (i + j))) | โŸจ(r i, r j), propertyโŸฉ => Sum.inr (Sum.inr (Sum.inr (i, j)))

                If n is odd, then the Dihedral group of order $2n$ has $n(n+3)$ pairs of commuting elements.