Documentation Verification Report

Dihedral

πŸ“ Source: Mathlib/GroupTheory/SpecificGroups/Dihedral.lean

Statistics

MetricCount
DefinitionsDihedralGroup, instFintypeOfNeZeroNat, instGroup, instInhabited, oddCommuteEquiv, Dihedral, instDecidableEqDihedralGroup, decEq
8
Theoremscard, card_commute_odd, card_conjClasses_odd, center_eq_bot_of_odd_ne_one, commutative_iff, exponent, instInfiniteOfNatNat, instIsKleinFourOfNatNat, instNontrivial, inv_r, inv_sr, isCyclic_iff, nat_card, not_commutative, not_isCyclic, oddCommuteEquiv_apply, oddCommuteEquiv_symm_apply, one_def, orderOf_r, orderOf_r_one, orderOf_sr, r_mul_r, r_mul_sr, r_one_pow, r_one_pow_n, r_one_zpow, r_pow, r_zero, r_zpow, sr_mul_r, sr_mul_self, sr_mul_sr
32
Total40

DihedralGroup

Definitions

NameCategoryTheorems
instFintypeOfNeZeroNat πŸ“–CompOp
1 mathmath: card
instGroup πŸ“–CompOp
32 mathmath: r_one_zpow, orderOf_r, r_pow, exponent, card_commute_odd, commProb_nil, oddCommuteEquiv_symm_apply, oddCommuteEquiv_apply, orderOf_sr, orderOf_r_one, center_eq_bot_of_odd_ne_one, r_zpow, r_mul_r, instIsKleinFourOfNatNat, sr_mul_sr, isCyclic_iff, not_isCyclic, sr_mul_r, card_conjClasses_odd, commutative_iff, r_one_pow_n, one_def, commProb_odd, r_mul_sr, r_one_pow, inv_r, sr_mul_self, commProb_cons, r_zero, commProb_reciprocal, not_commutative, inv_sr
instInhabited πŸ“–CompOpβ€”
oddCommuteEquiv πŸ“–CompOp
2 mathmath: oddCommuteEquiv_symm_apply, oddCommuteEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Fintype.card
DihedralGroup
instFintypeOfNeZeroNat
β€”Fintype.card_eq
Fintype.card_sum
ZMod.card
Nat.instAtLeastTwoHAddOfNat
two_mul
card_commute_odd πŸ“–mathematicalOdd
Nat.instSemiring
Nat.card
DihedralGroup
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”LT.lt.ne'
Odd.pos
Nat.instCanonicallyOrderedAdd
Nat.instNontrivial
Nat.card_congr
Nat.card_sum
Finite.of_fintype
Finite.instSum
Finite.instProd
Nat.card_prod
Nat.card_zmod
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
card_conjClasses_odd πŸ“–mathematicalOdd
Nat.instSemiring
Nat.card
ConjClasses
DihedralGroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”Odd.pos
Nat.instCanonicallyOrderedAdd
Nat.instNontrivial
card_commute_odd
mul_comm
card_comm_eq_card_conjClasses_mul_card
nat_card
Nat.instAtLeastTwoHAddOfNat
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
two_pos
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
center_eq_bot_of_odd_ne_one πŸ“–mathematicalOdd
Nat.instSemiring
Subgroup.center
DihedralGroup
instGroup
Bot.bot
Subgroup
Subgroup.instBot
β€”sub_self
add_assoc
AddLeftCancelSemigroup.toIsLeftCancelAdd
ZMod.add_self_eq_zero_iff_eq_zero
NeZero.one
ZMod.nontrivial
commutative_iff πŸ“–mathematicalβ€”DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”Mathlib.Tactic.Contrapose.contrapose₁
not_commutative
exponent πŸ“–mathematicalβ€”Monoid.exponent
DihedralGroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
GCDMonoid.lcm
Nat.instCommMonoidWithZero
instGCDMonoidNat
β€”eq_zero_or_neZero
Monoid.exponent_eq_zero_of_order_zero
orderOf_r_one
Monoid.exponent_dvd_of_forall_pow_eq_one
orderOf_dvd_iff_pow_eq_one
orderOf_r
dvd_lcm_left
orderOf_sr
dvd_lcm_right
lcm_dvd
Monoid.order_dvd_exponent
instInfiniteOfNatNat πŸ“–mathematicalβ€”Infinite
DihedralGroup
β€”Equiv.infinite_iff
Sum.infinite_of_right
ZMod.infinite
instIsKleinFourOfNatNat πŸ“–mathematicalβ€”IsKleinFour
DihedralGroup
instGroup
β€”nat_card
exponent
instNontrivial πŸ“–mathematicalβ€”Nontrivial
DihedralGroup
β€”β€”
inv_r πŸ“–mathematicalβ€”DihedralGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
r
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
ZMod.commRing
β€”β€”
inv_sr πŸ“–mathematicalβ€”DihedralGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
sr
β€”β€”
isCyclic_iff πŸ“–mathematicalβ€”IsCyclic
DihedralGroup
DivInvMonoid.toZPow
Group.toDivInvMonoid
instGroup
β€”not_imp_not
not_isCyclic
isCyclic_of_prime_card
Nat.fact_prime_two
nat_card
nat_card πŸ“–mathematicalβ€”Nat.card
DihedralGroup
β€”Nat.card_eq_zero_of_infinite
instInfiniteOfNatNat
Nat.card_eq_fintype_card
card
not_commutative πŸ“–mathematicalβ€”DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”zero_sub
zero_add
Nat.instAtLeastTwoHAddOfNat
ZMod.val_two_eq_two_mod
ZMod.val_eq_zero
one_add_one_eq_two
neg_eq_iff_add_eq_zero
sr_mul_r
r_mul_sr
not_isCyclic πŸ“–mathematicalβ€”IsCyclic
DihedralGroup
DivInvMonoid.toZPow
Group.toDivInvMonoid
instGroup
β€”exponent
lcm_same
normalize_eq
Unique.instSubsingleton
Nat.card_eq_fintype_card
card
IsCyclic.exponent_eq_card
not_commutative
IsCyclic.commutative
oddCommuteEquiv_apply πŸ“–mathematicalOdd
Nat.instSemiring
DFunLike.coe
Equiv
DihedralGroup
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
ZMod
EquivLike.toFunLike
Equiv.instEquivLike
oddCommuteEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”β€”
oddCommuteEquiv_symm_apply πŸ“–mathematicalOdd
Nat.instSemiring
DFunLike.coe
Equiv
ZMod
DihedralGroup
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
oddCommuteEquiv
sr
r
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
Units.instInv
ZMod.unitOfCoprime
β€”β€”
one_def πŸ“–mathematicalβ€”DihedralGroup
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
r
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”β€”
orderOf_r πŸ“–mathematicalβ€”orderOf
DihedralGroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
r
ZMod.val
β€”ZMod.natCast_zmod_val
r_one_pow
orderOf_pow
Finite.of_fintype
orderOf_r_one
orderOf_r_one πŸ“–mathematicalβ€”orderOf
DihedralGroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
r
ZMod
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
β€”eq_zero_or_neZero
orderOf_eq_zero_iff'
r_one_pow
one_def
ZMod.charZero
LT.lt.ne'
LE.le.lt_or_eq
NeZero.pos
Nat.instCanonicallyOrderedAdd
orderOf_dvd_of_pow_eq_one
r_one_pow_n
pow_orderOf_eq_one
ZMod.val_natCast
ZMod.val_eq_zero
LT.lt.ne
orderOf_pos
Finite.of_fintype
orderOf_sr πŸ“–mathematicalβ€”orderOf
DihedralGroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
sr
β€”orderOf_eq_prime
Nat.fact_prime_two
sq
sr_mul_self
r_mul_r πŸ“–mathematicalβ€”DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
r
ZMod
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”β€”
r_mul_sr πŸ“–mathematicalβ€”DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
r
sr
ZMod
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
β€”β€”
r_one_pow πŸ“–mathematicalβ€”DihedralGroup
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
r
ZMod
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
AddMonoidWithOne.toNatCast
β€”r_pow
one_mul
r_one_pow_n πŸ“–mathematicalβ€”DihedralGroup
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
r
ZMod
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”r_pow
CharP.cast_eq_zero
ZMod.charP
MulZeroClass.mul_zero
r_one_zpow πŸ“–mathematicalβ€”DihedralGroup
DivInvMonoid.toZPow
Group.toDivInvMonoid
instGroup
r
ZMod
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
AddGroupWithOne.toIntCast
β€”r_zpow
one_mul
r_pow πŸ“–mathematicalβ€”DihedralGroup
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
r
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”pow_zero
Nat.cast_zero
MulZeroClass.mul_zero
pow_add
pow_one
r_mul_r
Nat.cast_add
Nat.cast_one
mul_add
Distrib.leftDistribClass
mul_one
r_zero πŸ“–mathematicalβ€”r
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
DihedralGroup
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
β€”β€”
r_zpow πŸ“–mathematicalβ€”DihedralGroup
DivInvMonoid.toZPow
Group.toDivInvMonoid
instGroup
r
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
β€”zpow_natCast
r_pow
Int.cast_natCast
zpow_negSucc
Nat.cast_add
Nat.cast_one
neg_mul_eq_mul_neg
neg_add_rev
Int.cast_negSucc
sr_mul_r πŸ“–mathematicalβ€”DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
sr
r
ZMod
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”β€”
sr_mul_self πŸ“–mathematicalβ€”DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
sr
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”sub_self
sr_mul_sr πŸ“–mathematicalβ€”DihedralGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
sr
r
ZMod
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
β€”β€”

Quandle

Definitions

NameCategoryTheorems
Dihedral πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
DihedralGroup πŸ“–CompData
36 mathmath: DihedralGroup.r_one_zpow, DihedralGroup.orderOf_r, DihedralGroup.card, DihedralGroup.r_pow, DihedralGroup.exponent, DihedralGroup.instNontrivial, DihedralGroup.card_commute_odd, DihedralGroup.commProb_nil, DihedralGroup.oddCommuteEquiv_symm_apply, DihedralGroup.instInfiniteOfNatNat, DihedralGroup.oddCommuteEquiv_apply, DihedralGroup.orderOf_sr, DihedralGroup.orderOf_r_one, DihedralGroup.center_eq_bot_of_odd_ne_one, DihedralGroup.r_zpow, DihedralGroup.nat_card, DihedralGroup.r_mul_r, DihedralGroup.instIsKleinFourOfNatNat, DihedralGroup.sr_mul_sr, DihedralGroup.isCyclic_iff, DihedralGroup.not_isCyclic, DihedralGroup.sr_mul_r, DihedralGroup.card_conjClasses_odd, DihedralGroup.commutative_iff, DihedralGroup.r_one_pow_n, DihedralGroup.one_def, DihedralGroup.commProb_odd, DihedralGroup.r_mul_sr, DihedralGroup.r_one_pow, DihedralGroup.inv_r, DihedralGroup.sr_mul_self, DihedralGroup.commProb_cons, DihedralGroup.r_zero, DihedralGroup.commProb_reciprocal, DihedralGroup.not_commutative, DihedralGroup.inv_sr
instDecidableEqDihedralGroup πŸ“–CompOpβ€”

instDecidableEqDihedralGroup

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

---

← Back to Index