Commutators of Subgroups #
If G is a group and H₁ H₂ : Subgroup G then the commutator ⁅H₁, H₂⁆ : Subgroup G
is the subgroup of G generated by the commutators h₁ * h₂ * h₁⁻¹ * h₂⁻¹.
Main definitions #
⁅g₁, g₂⁆: the commutator of the elementsg₁andg₂(defined bycommutatorElementelsewhere).⁅H₁, H₂⁆: the commutator of the subgroupsH₁andH₂.commutator: defines the commutator of a groupGas a subgroup ofG.
@[simp]
@[simp]
@[simp]
The commutator of two subgroups H₁ and H₂.
Equations
instance
Subgroup.commutator_characteristic
{G : Type u_1}
[Group G]
(H₁ H₂ : Subgroup G)
[h₁ : H₁.Characteristic]
[h₂ : H₂.Characteristic]
:
⁅H₁, H₂⁆.Characteristic
The set of commutator elements ⁅g₁, g₂⁆ in G.
Equations
Instances For
The commutator subgroup of a group G is the normal subgroup
generated by the commutators [p,q]=p*q*p⁻¹*q⁻¹.
Equations
Instances For
Equations
Equations
If g is conjugate to g ^ 2, then g is a commutator
Representatives (g₁, g₂) : G × G of commutators ⁅g₁, g₂⁆ ∈ G.
Equations
Instances For
Subgroup generated by representatives g₁ g₂ : G of commutators ⁅g₁, g₂⁆ ∈ G.
Equations
Instances For
theorem
Subgroup.Normal.quotient_commutative_iff_commutator_le
{G : Type u_1}
[Group G]
{N : Subgroup G}
[N.Normal]
:
theorem
Subgroup.Normal.commutator_le_of_self_sup_commutative_eq_top
{G : Type u_1}
[Group G]
{N : Subgroup G}
[N.Normal]
{H : Subgroup G}
(hHN : N ⊔ H = ⊤)
(hH : IsMulCommutative ↥H)
:
If N is a normal subgroup of G and H a commutative subgroup such that H ⊔ N = ⊤,
then N contains commutator G.