Documentation

Mathlib.GroupTheory.Subgroup.Centralizer

Centralizers of subgroups #

def Subgroup.centralizer {G : Type u_1} [Group G] (s : Set G) :

The centralizer of s is the subgroup of g : G commuting with every h : s.

Equations
    Instances For
      def AddSubgroup.centralizer {G : Type u_1} [AddGroup G] (s : Set G) :

      The centralizer of s is the additive subgroup of g : G commuting with every h : s.

      Equations
        Instances For
          theorem Subgroup.mem_centralizer_iff {G : Type u_1} [Group G] {g : G} {s : Set G} :
          g โˆˆ centralizer s โ†” โˆ€ h โˆˆ s, h * g = g * h
          theorem AddSubgroup.mem_centralizer_iff {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
          g โˆˆ centralizer s โ†” โˆ€ h โˆˆ s, h + g = g + h
          theorem AddSubgroup.mem_centralizer_iff_commutator_eq_zero {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
          g โˆˆ centralizer s โ†” โˆ€ h โˆˆ s, h + g + -h + -g = 0
          theorem Subgroup.map_centralizer_le_centralizer_image {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (s : Set G) (f : G โ†’* G') :
          theorem Subgroup.le_centralizer {G : Type u_1} [Group G] (H : Subgroup G) [h : IsMulCommutative โ†ฅH] :
          theorem Subgroup.centralizer_eq_iInf {G : Type u_1} [Group G] (s : Set G) :
          centralizer s = โจ… g โˆˆ s, centralizer {g}
          theorem AddSubgroup.centralizer_eq_iInf {G : Type u_1} [AddGroup G] (s : Set G) :
          centralizer s = โจ… g โˆˆ s, centralizer {g}
          theorem Subgroup.center_eq_iInf {G : Type u_1} [Group G] {s : Set G} (hs : closure s = โŠค) :
          center G = โจ… g โˆˆ s, centralizer {g}
          theorem AddSubgroup.center_eq_iInf {G : Type u_1} [AddGroup G] {s : Set G} (hs : closure s = โŠค) :
          center G = โจ… g โˆˆ s, centralizer {g}
          theorem Subgroup.center_eq_infi' {G : Type u_1} [Group G] {s : Set G} (hs : closure s = โŠค) :
          center G = โจ… (g : โ†‘s), centralizer {โ†‘g}
          theorem AddSubgroup.center_eq_infi' {G : Type u_1} [AddGroup G] {s : Set G} (hs : closure s = โŠค) :
          center G = โจ… (g : โ†‘s), centralizer {โ†‘g}
          @[reducible, inline]
          abbrev Subgroup.closureCommGroupOfComm {G : Type u_1} [Group G] {k : Set G} (hcomm : โˆ€ x โˆˆ k, โˆ€ y โˆˆ k, x * y = y * x) :
          CommGroup โ†ฅ(closure k)

          If all the elements of a set s commute, then closure s is a commutative group.

          Equations
            Instances For
              @[reducible, inline]
              abbrev AddSubgroup.closureAddCommGroupOfComm {G : Type u_1} [AddGroup G] {k : Set G} (hcomm : โˆ€ x โˆˆ k, โˆ€ y โˆˆ k, x + y = y + x) :
              AddCommGroup โ†ฅ(closure k)

              If all the elements of a set s commute, then closure s is an additive commutative group.

              Equations
                Instances For

                  The conjugation action of N(H) on H.

                  Equations
                    @[simp]
                    theorem Subgroup.smul_coe {G : Type u_1} [Group G] (H : Subgroup G) (g : โ†ฅH.normalizer) (h : โ†ฅH) :
                    โ†‘(SMul.smul g h) = โ†‘g * โ†‘h * โ†‘gโปยน
                    def Subgroup.normalizerMonoidHom {G : Type u_1} [Group G] (H : Subgroup G) :
                    โ†ฅH.normalizer โ†’* MulAut โ†ฅH

                    The homomorphism N(H) โ†’ Aut(H) with kernel C(H).

                    Equations
                      Instances For
                        @[simp]
                        theorem Subgroup.normalizerMonoidHom_apply_symm_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (x : โ†ฅH.normalizer) (aโœ : โ†ฅH) :
                        โ†‘((MulEquiv.symm (H.normalizerMonoidHom x)) aโœ) = (โ†‘x)โปยน * โ†‘aโœ * โ†‘x
                        @[simp]
                        theorem Subgroup.normalizerMonoidHom_apply_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (x : โ†ฅH.normalizer) (aโœ : โ†ฅH) :
                        โ†‘((H.normalizerMonoidHom x) aโœ) = โ†‘x * โ†‘aโœ * (โ†‘x)โปยน