Centralizers of subgroups #
The centralizer of s is the additive subgroup of g : G commuting with every h : s.
Equations
Instances For
@[simp]
@[simp]
instance
Subgroup.normal_centralizer
{G : Type u_1}
[Group G]
{H : Subgroup G}
[H.Normal]
:
(centralizer โH).Normal
instance
AddSubgroup.normal_centralizer
{G : Type u_1}
[AddGroup G]
{H : AddSubgroup G}
[H.Normal]
:
(centralizer โH).Normal
instance
Subgroup.characteristic_centralizer
{G : Type u_1}
[Group G]
{H : Subgroup G}
[hH : H.Characteristic]
:
(centralizer โH).Characteristic
instance
AddSubgroup.characteristic_centralizer
{G : Type u_1}
[AddGroup G]
{H : AddSubgroup G}
[hH : H.Characteristic]
:
(centralizer โH).Characteristic
theorem
AddSubgroup.le_centralizer_iff_isAddCommutative
{G : Type u_1}
[AddGroup G]
{K : AddSubgroup G}
:
theorem
Subgroup.le_centralizer
{G : Type u_1}
[Group G]
(H : Subgroup G)
[h : IsMulCommutative โฅH]
:
theorem
AddSubgroup.le_centralizer
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup G)
[h : IsAddCommutative โฅH]
:
@[reducible, inline]
abbrev
AddSubgroup.closureAddCommGroupOfComm
{G : Type u_1}
[AddGroup G]
{k : Set G}
(hcomm : โ x โ k, โ y โ k, x + y = y + x)
:
AddCommGroup โฅ(closure k)
If all the elements of a set s commute, then closure s is an additive commutative group.
Equations
Instances For
instance
Subgroup.instMulDistribMulActionSubtypeMemNormalizer
{G : Type u_1}
[Group G]
(H : Subgroup G)
:
MulDistribMulAction โฅH.normalizer โฅH
The conjugation action of N(H) on H.
Equations
@[simp]
theorem
Subgroup.smul_coe
{G : Type u_1}
[Group G]
(H : Subgroup G)
(g : โฅH.normalizer)
(h : โฅH)
:
The homomorphism N(H) โ Aut(H) with kernel C(H).
Equations
Instances For
@[simp]
theorem
Subgroup.normalizerMonoidHom_apply_symm_apply_coe
{G : Type u_1}
[Group G]
(H : Subgroup G)
(x : โฅH.normalizer)
(aโ : โฅH)
:
@[simp]
theorem
Subgroup.normalizerMonoidHom_apply_apply_coe
{G : Type u_1}
[Group G]
(H : Subgroup G)
(x : โฅH.normalizer)
(aโ : โฅH)
: