Documentation Verification Report

Centralizer

πŸ“ Source: Mathlib/GroupTheory/Subgroup/Centralizer.lean

Statistics

MetricCount
Definitionscentralizer, closureAddCommGroupOfComm, centralizer, closureCommGroupOfComm, instMulDistribMulActionSubtypeMemNormalizer, normalizerMonoidHom
6
Theoremscenter_eq_iInf, center_eq_infi', center_le_centralizer, centralizer_closure, centralizer_eq_iInf, centralizer_eq_top_iff_subset, centralizer_le, centralizer_univ, characteristic_centralizer, closure_le_centralizer_centralizer, le_centralizer, le_centralizer_iff, le_centralizer_iff_isAddCommutative, map_centralizer_le_centralizer_image, mem_centralizer_iff, mem_centralizer_iff_commutator_eq_zero, mem_centralizer_singleton_iff, normal_centralizer, center_eq_iInf, center_eq_infi', center_le_centralizer, centralizer_closure, centralizer_eq_iInf, centralizer_eq_top_iff_subset, centralizer_le, centralizer_univ, characteristic_centralizer, closure_le_centralizer_centralizer, le_centralizer, le_centralizer_iff, le_centralizer_iff_isMulCommutative, map_centralizer_le_centralizer_image, mem_centralizer_iff, mem_centralizer_iff_commutator_eq_one, mem_centralizer_singleton_iff, normal_centralizer, normalizerMonoidHom_apply_apply_coe, normalizerMonoidHom_apply_symm_apply_coe, normalizerMonoidHom_ker, smul_coe
40
Total46

AddSubgroup

Definitions

NameCategoryTheorems
centralizer πŸ“–CompOp
18 mathmath: centralizer_eq_iInf, le_centralizer_iff, closure_le_centralizer_centralizer, mem_centralizer_iff_commutator_eq_zero, characteristic_centralizer, centralizer_closure, center_eq_infi', le_centralizer_iff_isAddCommutative, centralizer_le, mem_centralizer_iff, centralizer_eq_top_iff_subset, normal_centralizer, center_eq_iInf, centralizer_univ, center_le_centralizer, le_centralizer, mem_centralizer_singleton_iff, map_centralizer_le_centralizer_image
closureAddCommGroupOfComm πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
center_eq_iInf πŸ“–mathematicalclosure
Top.top
AddSubgroup
instTop
center
iInf
instInfSet
Set
Set.instMembership
centralizer
Set.instSingletonSet
β€”centralizer_univ
coe_top
centralizer_closure
centralizer_eq_iInf
center_eq_infi' πŸ“–mathematicalclosure
Top.top
AddSubgroup
instTop
center
iInf
Set.Elem
instInfSet
centralizer
Set
Set.instSingletonSet
Set.instMembership
β€”center_eq_iInf
iInf_subtype''
center_le_centralizer πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
center
centralizer
β€”Set.addCenter_subset_addCentralizer
centralizer_closure πŸ“–mathematicalβ€”centralizer
SetLike.coe
AddSubgroup
instSetLike
closure
β€”le_antisymm
centralizer_le
subset_closure
le_centralizer_iff
closure_le_centralizer_centralizer
centralizer_eq_iInf πŸ“–mathematicalβ€”centralizer
iInf
AddSubgroup
instInfSet
Set
Set.instMembership
Set.instSingletonSet
β€”le_antisymm
le_iInfβ‚‚
centralizer_le
Set.singleton_subset_iff
mem_iInf
mem_centralizer_singleton_iff
centralizer_eq_top_iff_subset πŸ“–mathematicalβ€”centralizer
Top.top
AddSubgroup
instTop
Set
Set.instHasSubset
SetLike.coe
instSetLike
center
β€”SetLike.ext'_iff
Set.addCentralizer_eq_top_iff_subset
centralizer_le πŸ“–mathematicalSet
Set.instHasSubset
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
β€”AddSubmonoid.centralizer_le
centralizer_univ πŸ“–mathematicalβ€”centralizer
Set.univ
center
β€”SetLike.ext'
Set.addCentralizer_univ
characteristic_centralizer πŸ“–mathematicalβ€”Characteristic
centralizer
SetLike.coe
AddSubgroup
instSetLike
β€”characteristic_iff_comap_le
AddEquiv.injective
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
characteristic_iff_le_comap
closure_le_centralizer_centralizer πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
centralizer
SetLike.coe
instSetLike
β€”closure_le
Set.subset_addCentralizer_addCentralizer
le_centralizer πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
β€”le_centralizer_iff_isAddCommutative
le_centralizer_iff πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
β€”β€”
le_centralizer_iff_isAddCommutative πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
IsAddCommutative
SetLike.instMembership
add
β€”IsAddCommutative.is_comm
map_centralizer_le_centralizer_image πŸ“–mathematicalβ€”AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
centralizer
Set.image
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
β€”map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
mem_centralizer_iff πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
centralizer
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”β€”
mem_centralizer_iff_commutator_eq_zero πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
centralizer
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
NegZeroClass.toZero
β€”mem_centralizer_iff
add_neg_eq_iff_eq_add
zero_add
mem_centralizer_singleton_iff πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
instSetLike
centralizer
Set
Set.instSingletonSet
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”mem_centralizer_iff
Set.mem_singleton_iff
normal_centralizer πŸ“–mathematicalβ€”Normal
centralizer
SetLike.coe
AddSubgroup
instSetLike
β€”add_assoc
neg_neg
add_neg_cancel_left
add_neg_cancel
add_zero
Normal.conj_mem

Subgroup

Definitions

NameCategoryTheorems
centralizer πŸ“–CompOp
45 mathmath: mem_centralizer_iff_commutator_eq_one, characteristic_centralizer, Equiv.Perm.Basis.toCentralizer_equivariant, ConjAct.stabilizer_eq_centralizer, centralizer_univ, Equiv.Perm.Basis.toCentralizer_apply, Equiv.Perm.OnCycleFactors.mem_range_toPermHom_iff', le_centralizer_iff, mem_centralizer_iff, Equiv.Perm.OnCycleFactors.nat_card_range_toPermHom, quotientCentralizerEmbedding_apply, le_centralizer, centralizer_eq_top_iff_subset, normalizerMonoidHom_ker, centralizer_closure, Equiv.Perm.Basis.ofPermHom_mem_centralizer, Sylow.normalizer_le_centralizer_or_le_commutator, Equiv.Perm.OnCycleFactors.val_centralizer_smul, commutator_eq_bot_iff_le_centralizer, map_centralizer_le_centralizer_image, Equiv.Perm.Basis.toPermHom_apply_toCentralizer, Equiv.Perm.centralizer_le_alternating_iff, mem_centralizer_singleton_iff, Equiv.Perm.OnCycleFactors.mem_ker_toPermHom_iff, closure_le_centralizer_centralizer, commutator_centralizer_commutator_le_center, Equiv.Perm.OnCycleFactors.coe_toPermHom, center_le_centralizer, Equiv.Perm.OnCycleFactors.mem_range_toPermHom_iff, centralizer_le, Equiv.Perm.OnCycleFactors.kerParam_range_eq_centralizer_of_count_le_one, Equiv.Perm.OnCycleFactors.toPermHom_apply, center_eq_infi', center_eq_iInf, Equiv.Perm.OnCycleFactors.kerParam_range_le_centralizer, le_centralizer_iff_isMulCommutative, Equiv.Perm.OnCycleFactors.kerParam_range_eq, IsCyclic.normalizer_le_centralizer, nat_card_centralizer_nat_card_stabilizer, Equiv.Perm.nat_card_centralizer, normal_centralizer, Equiv.Perm.OnCycleFactors.range_toPermHom_eq_range_toPermHom', Equiv.Perm.OnCycleFactors.centralizer_smul_def, centralizer_eq_comap_stabilizer, centralizer_eq_iInf
closureCommGroupOfComm πŸ“–CompOpβ€”
instMulDistribMulActionSubtypeMemNormalizer πŸ“–CompOp
1 mathmath: smul_coe
normalizerMonoidHom πŸ“–CompOp
6 mathmath: normalizerMonoidHom_ker, normalizerMonoidHom_apply_apply_coe, SemidirectProduct.mulEquivSubgroup_apply, SemidirectProduct.mulEquivSubgroup_symm_apply, normalizerMonoidHom_apply_symm_apply_coe, SemidirectProduct.monoidHomSubgroup_apply

Theorems

NameKindAssumesProvesValidatesDepends On
center_eq_iInf πŸ“–mathematicalclosure
Top.top
Subgroup
instTop
center
iInf
instInfSet
Set
Set.instMembership
centralizer
Set.instSingletonSet
β€”centralizer_univ
coe_top
centralizer_closure
centralizer_eq_iInf
center_eq_infi' πŸ“–mathematicalclosure
Top.top
Subgroup
instTop
center
iInf
Set.Elem
instInfSet
centralizer
Set
Set.instSingletonSet
Set.instMembership
β€”center_eq_iInf
iInf_subtype''
center_le_centralizer πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
center
centralizer
β€”Set.center_subset_centralizer
centralizer_closure πŸ“–mathematicalβ€”centralizer
SetLike.coe
Subgroup
instSetLike
closure
β€”le_antisymm
centralizer_le
subset_closure
le_centralizer_iff
closure_le_centralizer_centralizer
centralizer_eq_iInf πŸ“–mathematicalβ€”centralizer
iInf
Subgroup
instInfSet
Set
Set.instMembership
Set.instSingletonSet
β€”le_antisymm
le_iInfβ‚‚
centralizer_le
Set.singleton_subset_iff
centralizer_eq_top_iff_subset πŸ“–mathematicalβ€”centralizer
Top.top
Subgroup
instTop
Set
Set.instHasSubset
SetLike.coe
instSetLike
center
β€”SetLike.ext'_iff
Set.centralizer_eq_top_iff_subset
centralizer_le πŸ“–mathematicalSet
Set.instHasSubset
Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
β€”Submonoid.centralizer_le
centralizer_univ πŸ“–mathematicalβ€”centralizer
Set.univ
center
β€”SetLike.ext'
Set.centralizer_univ
characteristic_centralizer πŸ“–mathematicalβ€”Characteristic
centralizer
SetLike.coe
Subgroup
instSetLike
β€”characteristic_iff_comap_le
MulEquiv.injective
map_mul
MonoidHomClass.toMulHomClass
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
characteristic_iff_le_comap
closure_le_centralizer_centralizer πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
centralizer
SetLike.coe
instSetLike
β€”closure_le
Set.subset_centralizer_centralizer
le_centralizer πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
β€”le_centralizer_iff_isMulCommutative
le_centralizer_iff πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
β€”β€”
le_centralizer_iff_isMulCommutative πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
IsMulCommutative
SetLike.instMembership
mul
β€”IsMulCommutative.is_comm
map_centralizer_le_centralizer_image πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
centralizer
Set.image
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
β€”map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mem_centralizer_iff πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
centralizer
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
mem_centralizer_iff_commutator_eq_one πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
centralizer
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
InvOneClass.toOne
β€”one_mul
mem_centralizer_singleton_iff πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
centralizer
Set
Set.instSingletonSet
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
normal_centralizer πŸ“–mathematicalβ€”Normal
centralizer
SetLike.coe
Subgroup
instSetLike
β€”mul_assoc
inv_inv
mul_inv_cancel_left
mul_inv_cancel
mul_one
Normal.conj_mem
normalizerMonoidHom_apply_apply_coe πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
normalizer
MulAut
mul
MulAut.instGroup
MonoidHom.instFunLike
normalizerMonoidHom
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
normalizerMonoidHom_apply_symm_apply_coe πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
MonoidHom
normalizer
MulAut
mul
MulAut.instGroup
MonoidHom.instFunLike
normalizerMonoidHom
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv_inv
normalizerMonoidHom_ker πŸ“–mathematicalβ€”MonoidHom.ker
Subgroup
SetLike.instMembership
instSetLike
normalizer
toGroup
MulAut
mul
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
normalizerMonoidHom
subgroupOf
centralizer
SetLike.coe
β€”β€”
smul_coe πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
instSetLike
normalizer
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
instMulDistribMulActionSubtypeMemNormalizer
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
inv
β€”β€”

---

← Back to Index