Documentation Verification Report

Combination

πŸ“ Source: Mathlib/GroupTheory/GroupAction/SubMulAction/Combination.lean

Statistics

MetricCount
DefinitionsaddActionHom_of_embedding, addActionHom_singleton, instAddActionElemFinset, instMulActionElemFinset, mulActionHom_compl, mulActionHom_of_embedding, mulActionHom_singleton, subAddAction, subMulAction
9
TheoremsaddActionHom_of_embedding_surjective, addActionHom_singleton_bijective, addAction_faithful, addAction_stabilizer_coe, coe_addActionHom_of_embedding, coe_mulActionHom_compl, coe_mulActionHom_of_embedding, coe_smul, coe_vadd, faithfulSMul, faithfulVAdd, isPreprimitive_alternatingGroup, isPreprimitive_perm, isPretransitive, isPretransitive_alternatingGroup, isPretransitive_of_isMultiplyPretransitive, isPretransitive_of_isMultiplyPretransitive', mem_mulActionHom_compl, mulActionHom_compl_bijective, mulActionHom_compl_mulActionHom_compl, mulActionHom_of_embedding_surjective, mulActionHom_singleton_bijective, mulAction_faithful, stabilizer_coe
24
Total33

Set.powersetCard

Definitions

NameCategoryTheorems
addActionHom_of_embedding πŸ“–CompOp
2 mathmath: addActionHom_of_embedding_surjective, coe_addActionHom_of_embedding
addActionHom_singleton πŸ“–CompOp
1 mathmath: addActionHom_singleton_bijective
instAddActionElemFinset πŸ“–CompOp
8 mathmath: isPretransitive_of_isMultiplyPretransitive', addAction_stabilizer_coe, addActionHom_of_embedding_surjective, faithfulVAdd, addActionHom_singleton_bijective, coe_addActionHom_of_embedding, addAction_faithful, coe_vadd
instMulActionElemFinset πŸ“–CompOp
16 mathmath: isPretransitive, mem_mulActionHom_compl, faithfulSMul, stabilizer_coe, isPretransitive_alternatingGroup, mulActionHom_compl_mulActionHom_compl, mulActionHom_compl_bijective, isPreprimitive_perm, isPretransitive_of_isMultiplyPretransitive, isPreprimitive_alternatingGroup, mulActionHom_singleton_bijective, mulAction_faithful, coe_mulActionHom_compl, coe_mulActionHom_of_embedding, mulActionHom_of_embedding_surjective, coe_smul
mulActionHom_compl πŸ“–CompOp
4 mathmath: mem_mulActionHom_compl, mulActionHom_compl_mulActionHom_compl, mulActionHom_compl_bijective, coe_mulActionHom_compl
mulActionHom_of_embedding πŸ“–CompOp
2 mathmath: coe_mulActionHom_of_embedding, mulActionHom_of_embedding_surjective
mulActionHom_singleton πŸ“–CompOp
1 mathmath: mulActionHom_singleton_bijective
subAddAction πŸ“–CompOpβ€”
subMulAction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addActionHom_of_embedding_surjective πŸ“–mathematicalβ€”Function.Embedding
Set.Elem
Finset
Set.powersetCard
DFunLike.coe
AddActionHom
Function.Embedding.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instAddActionElemFinset
instFunLikeAddActionHom
addActionHom_of_embedding
β€”Function.Embedding.exists_of_card_eq_finset
Fintype.card_fin
addActionHom_singleton_bijective πŸ“–mathematicalβ€”Function.Bijective
Set.Elem
Finset
Set.powersetCard
DFunLike.coe
AddActionHom
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instAddActionElemFinset
instFunLikeAddActionHom
addActionHom_singleton
β€”Finset.singleton_injective
Finset.card_eq_one
addAction_faithful πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
AddAction.toPerm
Set.Elem
Finset
Set.powersetCard
instAddActionElemFinset
Equiv.Perm
Equiv.Perm.instOne
β€”Mathlib.Tactic.Contrapose.contrapose₁
exists_mem_notMem
Equiv.ext_iff
Mathlib.Tactic.Contrapose.contraposeβ‚„
Equiv.Perm.coe_one
coe_vadd
addAction_stabilizer_coe πŸ“–mathematicalβ€”AddAction.stabilizer
Set.Elem
Finset
Set.powersetCard
instAddActionElemFinset
Set
Set.addActionSet
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.coe
instSetLikeElemFinset
β€”AddSubgroup.ext
AddAction.mem_stabilizer_iff
coe_vadd
Finset.coe_vadd_finset
coe_addActionHom_of_embedding πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
AddActionHom.toFun
Function.Embedding
Function.Embedding.vadd
Set.Elem
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instAddActionElemFinset
addActionHom_of_embedding
Finset.map
Finset.univ
Fin.fintype
β€”β€”
coe_mulActionHom_compl πŸ“–mathematicalFintype.cardFinset
Set
Set.instMembership
Set.powersetCard
DFunLike.coe
MulActionHom
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
instFunLikeMulActionHom
mulActionHom_compl
Compl.compl
BooleanAlgebra.toCompl
Finset.booleanAlgebra
β€”β€”
coe_mulActionHom_of_embedding πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
MulActionHom.toFun
Function.Embedding
Function.Embedding.smul
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
mulActionHom_of_embedding
Finset.map
Finset.univ
Fin.fintype
β€”β€”
coe_smul πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
Finset.smulFinset
β€”SubMulAction.val_smul
coe_vadd πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
Set.powersetCard
HVAdd.hVAdd
Set.Elem
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instAddActionElemFinset
Finset.vaddFinset
β€”SubAddAction.val_vadd
faithfulSMul πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
FaithfulSMul
Set.Elem
Finset
Set.powersetCard
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
β€”faithfulSMul_iff
MulAction.toPerm_injective
MulAction.toPerm_one
mulAction_faithful
Equiv.Perm.ext_iff
faithfulVAdd πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
FaithfulVAdd
Set.Elem
Finset
Set.powersetCard
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instAddActionElemFinset
β€”faithfulVAdd_iff
AddAction.toPerm_injective
AddAction.toPerm_zero
addAction_faithful
Equiv.Perm.ext_iff
isPreprimitive_alternatingGroup πŸ“–mathematicalNat.cardMulAction.IsPreprimitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Set.Elem
Finset
Set.powersetCard
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
MulAction.instMulAction
instMulActionElemFinset
Equiv.Perm.applyMulAction
β€”isPretransitive_alternatingGroup
le_trans
LT.lt.le
nontrivial
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
ENat.card_eq_coe_fintype_card
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.card_eq_fintype_card
Nontrivial.to_nonempty
MulAction.isCoatom_stabilizer_iff_preprimitive
stabilizer_coe
alternatingGroup.isCoatom_stabilizer
coe_nonempty_iff
Mathlib.Meta.NormNum.isNat_le_true
Finite.of_fintype
ncard_eq
ne_of_lt
isPreprimitive_perm πŸ“–mathematicalNat.cardMulAction.IsPreprimitive
Equiv.Perm
Set.Elem
Finset
Set.powersetCard
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
MulAction.toSemigroupAction
instMulActionElemFinset
Equiv.Perm.applyMulAction
β€”Nat.finite_of_card_ne_zero
isPretransitive
nontrivial'
Nontrivial.to_nonempty
MulAction.isCoatom_stabilizer_iff_preprimitive
stabilizer_coe
Equiv.Perm.isCoatom_stabilizer
coe_nonempty_iff
Set.nonempty_compl
Set.eq_univ_iff_ncard
ncard_eq
LT.lt.ne
isPretransitive πŸ“–mathematicalβ€”MulAction.IsPretransitive
Equiv.Perm
Set.Elem
Finset
Set.powersetCard
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
MulAction.toSemigroupAction
instMulActionElemFinset
Equiv.Perm.applyMulAction
β€”isPretransitive_of_isMultiplyPretransitive
Equiv.Perm.isMultiplyPretransitive
isPretransitive_alternatingGroup πŸ“–mathematicalNat.cardMulAction.IsPretransitive
Equiv.Perm
Subgroup
Equiv.Perm.permGroup
SetLike.instMembership
Subgroup.instSetLike
alternatingGroup
Set.Elem
Finset
Set.powersetCard
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MulAction.toSemigroupAction
MulAction.instMulAction
instMulActionElemFinset
Equiv.Perm.applyMulAction
β€”isPretransitive_of_isMultiplyPretransitive
eq_or_ne
MulAction.instIsPretransitiveOfSubsingleton
Unique.instSubsingleton
Fin.isEmpty'
MulAction.is_one_pretransitive_iff
alternatingGroup.isPretransitive_of_three_le_card
alternatingGroup.isMultiplyPretransitive
MulAction.isMultiplyPretransitive_of_le
Finite.of_fintype
MulAction.IsPretransitive.of_surjective_map
Nat.card_eq_fintype_card
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Function.Bijective.surjective
mulActionHom_compl_bijective
Finite.card_le_one_iff_subsingleton
instFiniteElemFinset
card
Nat.choose_eq_zero_iff
not_le
isPretransitive_of_isMultiplyPretransitive πŸ“–mathematicalβ€”MulAction.IsPretransitive
Set.Elem
Finset
Set.powersetCard
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
β€”MulAction.IsPretransitive.of_surjective_map
mulActionHom_of_embedding_surjective
isPretransitive_of_isMultiplyPretransitive' πŸ“–mathematicalβ€”AddAction.IsPretransitive
Set.Elem
Finset
Set.powersetCard
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instAddActionElemFinset
β€”AddAction.IsPretransitive.of_surjective_map
addActionHom_of_embedding_surjective
mem_mulActionHom_compl πŸ“–mathematicalFintype.cardSet.Elem
Finset
Set.powersetCard
SetLike.instMembership
instSetLikeElemFinset
DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
instFunLikeMulActionHom
mulActionHom_compl
β€”Finset.mem_compl
mulActionHom_compl_bijective πŸ“–mathematicalFintype.cardFunction.Bijective
Set.Elem
Finset
Set.powersetCard
DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
instFunLikeMulActionHom
mulActionHom_compl
β€”Function.bijective_iff_has_inverse
CompTriple.instId_comp
CompTriple.instIsIdId
DFunLike.ext_iff
mulActionHom_compl_mulActionHom_compl
mulActionHom_compl_mulActionHom_compl πŸ“–mathematicalFintype.cardMulActionHom.comp
Set.Elem
Finset
Set.powersetCard
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
mulActionHom_compl
CompTriple.instId_comp
CompTriple.instIsIdId
MulActionHom.id
β€”MulActionHom.ext
CompTriple.instId_comp
CompTriple.instIsIdId
Finset.ext
mulActionHom_of_embedding_surjective πŸ“–mathematicalβ€”Function.Embedding
Set.Elem
Finset
Set.powersetCard
DFunLike.coe
MulActionHom
Function.Embedding.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
instFunLikeMulActionHom
mulActionHom_of_embedding
β€”Function.Embedding.exists_of_card_eq_finset
Fintype.card_fin
mulActionHom_singleton_bijective πŸ“–mathematicalβ€”Function.Bijective
Set.Elem
Finset
Set.powersetCard
DFunLike.coe
MulActionHom
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemFinset
instFunLikeMulActionHom
mulActionHom_singleton
β€”Finset.singleton_injective
Finset.card_eq_one
mulAction_faithful πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
ENat.card
MulAction.toPerm
Set.Elem
Finset
Set.powersetCard
instMulActionElemFinset
Equiv.Perm
Equiv.Perm.instOne
β€”Mathlib.Tactic.Contrapose.contrapose₁
exists_mem_notMem
Equiv.ext_iff
Mathlib.Tactic.Contrapose.contraposeβ‚„
Equiv.Perm.coe_one
coe_smul
stabilizer_coe πŸ“–mathematicalβ€”MulAction.stabilizer
Set.Elem
Finset
Set.powersetCard
instMulActionElemFinset
Set
Set.mulActionSet
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
instSetLikeElemFinset
β€”Subgroup.ext
coe_smul
Finset.coe_smul_finset

---

← Back to Index