Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.Combination

Combinations #

Combinations in a type are finite subsets of given cardinality. This file provides some API for handling them in the context of a group action.

This induces a MulAction G (powersetCard α n) instance. Then:

def Set.powersetCard.subMulAction (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (n : ) [DecidableEq α] :

Set.powersetCard α n as a SubMulAction of Finset α.

Equations
    Instances For
      def Set.powersetCard.subAddAction (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (n : ) [DecidableEq α] :

      Set.powersetCard α n as a SubAddAction of Finsetα.

      Equations
        Instances For
          instance Set.powersetCard.instMulActionElemFinset (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] {n : } [DecidableEq α] :
          Equations
            instance Set.powersetCard.instAddActionElemFinset (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] {n : } [DecidableEq α] :
            Equations
              @[simp]
              theorem Set.powersetCard.coe_smul {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] [DecidableEq α] {n : } {g : G} {s : (powersetCard α n)} :
              ↑(g s) = g s
              @[simp]
              theorem Set.powersetCard.coe_vadd {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] [DecidableEq α] {n : } {g : G} {s : (powersetCard α n)} :
              ↑(g +ᵥ s) = g +ᵥ s
              theorem Set.powersetCard.addAction_faithful {α : Type u_2} [DecidableEq α] {G : Type u_3} [AddGroup G] [AddAction G α] {n : } (hn : 1 n) ( : n < ENat.card α) {g : G} :
              theorem Set.powersetCard.faithfulVAdd {α : Type u_2} [DecidableEq α] {G : Type u_3} [AddGroup G] [AddAction G α] {n : } (hn : 1 n) ( : n < ENat.card α) [FaithfulVAdd G α] :

              If an additive group G acts faithfully on α, then it acts faithfully on powersetCard α n, provided 1 ≤ n < ENat.card α.

              theorem Set.powersetCard.mulAction_faithful {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) {g : G} :
              theorem Set.powersetCard.faithfulSMul {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) [FaithfulSMul G α] :

              If a group G acts faithfully on α, then it acts faithfull on powersetCard α n provided 1 ≤ n < ENat.card α.

              def Set.powersetCard.mulActionHom_of_embedding (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (n : ) [DecidableEq α] :
              (Fin n α) →ₑ[id] (powersetCard α n)

              The equivariant map from embeddings of Fin n (aka arrangement) to combinations.

              Equations
                Instances For
                  def Set.powersetCard.addActionHom_of_embedding (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (n : ) [DecidableEq α] :
                  (Fin n α) →ₑ[id] (powersetCard α n)

                  The equivariant map from embeddings of Fin n (aka arrangements) to combinations.

                  Equations
                    Instances For
                      def Set.powersetCard.mulActionHom_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :

                      The complement of a combination, as an equivariant map.

                      Equations
                        Instances For
                          theorem Set.powersetCard.coe_mulActionHom_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} :
                          ((mulActionHom_compl G α hm) s) = (↑s)
                          theorem Set.powersetCard.mem_mulActionHom_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} {a : α} :
                          a (mulActionHom_compl G α hm) s as
                          noncomputable def Set.powersetCard.mulActionHom_singleton (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] [DecidableEq α] :

                          The obvious map from a type to its 1-combinations, as an equivariant map.

                          Equations
                            Instances For
                              noncomputable def Set.powersetCard.addActionHom_singleton (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] [DecidableEq α] :

                              The obvious map from a type to its 1-combinations, as an equivariant map.

                              Equations
                                Instances For
                                  theorem Set.powersetCard.isPreprimitive_perm {α : Type u_2} [DecidableEq α] {n : } (h_one_le : 1 n) (hn : n < Nat.card α) ( : Nat.card α 2 * n) :

                                  The action of Equiv.Perm α on Set.powersetCard α n is preprimitive provided 1 ≤ n < Nat.card α and Nat.card α ≠ 2 * n.

                                  This is a consequence that the stabilizer of such a combination is a maximal subgroup.

                                  If 3 ≤ Nat.card α, then alternatingGroup α acts transitively on Set.powersetCard α n.

                                  If Nat.card α ≤ 2, then alternatinGroup α is trivial, and the result only holds in the trivial case where powersetCard α n is a subsingleton, that is, when n = 0 or Nat.card α ≤ n.

                                  theorem Set.powersetCard.isPreprimitive_alternatingGroup {α : Type u_2} [DecidableEq α] [Fintype α] {n : } (h_three_le : 3 n) (hn : n < Nat.card α) ( : Nat.card α 2 * n) :

                                  The action of alternatingGroup α on Set.powersetCard α n is preprimitive provided 1 ≤ n < Nat.card α and Nat.card α ≠ 2 * n.