Documentation Verification Report

MonoidWithZero

πŸ“ Source: Mathlib/GroupTheory/MonoidLocalization/MonoidWithZero.lean

Statistics

MetricCount
DefinitionsinstCommMonoidWithZero, MonoidWithZero, liftβ‚€
3
TheoremsliftOn_zero, mk_zero, map_zero, isCancelMulZero, liftβ‚€_apply, liftβ‚€_def, map_eq_zero_iff, map_nonZeroDivisors_le, map_zero, mk'_eq_zero_iff, mk'_zero, noZeroDivisors, nonZeroDivisors_le_comap, nontrivial, sec_zero_fst, subsingleton, subsingleton_iff, instMonoidWithZeroHomClassLocalizationMap
18
Total21

Localization

Definitions

NameCategoryTheorems
instCommMonoidWithZero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
liftOn_zero πŸ“–mathematicalβ€”liftOn
CommMonoidWithZero.toCommMonoid
Localization
OreLocalization.instZero
CommMonoid.toMonoid
OreLocalization.oreSetComm
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Monoid.toMulAction
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
Submonoid.one
β€”mk_zero
mk_zero πŸ“–mathematicalβ€”CommMonoidWithZero.toCommMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Localization
OreLocalization.instZero
CommMonoid.toMonoid
OreLocalization.oreSetComm
Monoid.toMulAction
β€”OreLocalization.zero_oreDiv'

Submonoid

Theorems

NameKindAssumesProvesValidatesDepends On
instMonoidWithZeroHomClassLocalizationMap πŸ“–mathematicalβ€”MonoidWithZeroHomClass
LocalizationMap
CommMonoidWithZero.toCommMonoid
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LocalizationMap.instFunLike
β€”LocalizationMap.instMonoidHomClass
LocalizationMap.surj
MulZeroClass.zero_mul
map_mul
MonoidHomClass.toMulHomClass
MulZeroClass.mul_zero

Submonoid.IsLocalizationMap

Theorems

NameKindAssumesProvesValidatesDepends On
map_zero πŸ“–mathematicalSubmonoid.IsLocalizationMap
CommMonoidWithZero.toCommMonoid
DFunLike.coe
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”Submonoid.LocalizationMap.map_zero

Submonoid.LocalizationMap

Definitions

NameCategoryTheorems
liftβ‚€ πŸ“–CompOp
2 mathmath: liftβ‚€_apply, liftβ‚€_def

Theorems

NameKindAssumesProvesValidatesDepends On
isCancelMulZero πŸ“–mathematicalβ€”IsCancelMulZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
β€”Commute.isRegular_iff
Commute.all
Commute.isRightRegular_iff
surj
IsRightRegular.of_mul
IsRegular.right
map_isRegular
isCancelMulZero_iff_forall_isRegular
IsUnit.mul_left_eq_zero
map_units
map_zero
MonoidWithZeroHomClass.toZeroHomClass
Submonoid.instMonoidWithZeroHomClassLocalizationMap
liftβ‚€_apply πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
MonoidWithZeroHom.funLike
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
liftβ‚€
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Monoid.toMulOneClass
CommMonoid.toMonoid
CommMonoidWithZero.toCommMonoid
sec
Units.val
Units
Units.instInv
MonoidHom
MulOneClass.toMulOne
Submonoid.toMonoid
Units.instMulOneClass
MonoidHom.instFunLike
IsUnit.liftRight
MonoidHom.restrict
Submonoid.instSubmonoidClass
MonoidWithZeroHom.toMonoidHom
β€”β€”
liftβ‚€_def πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
MonoidWithZeroHom.funLike
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
liftβ‚€
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
CommMonoidWithZero.toCommMonoid
MonoidHom.instFunLike
lift
MonoidHomClass.toMonoidHom
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
β€”β€”
map_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
CommMonoidWithZero.toCommMonoid
instFunLike
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”map_zero
MulZeroClass.mul_zero
map_nonZeroDivisors_le πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Submonoid.map
Submonoid.LocalizationMap
CommMonoidWithZero.toCommMonoid
instFunLike
instMonoidHomClass
nonZeroDivisors
β€”instMonoidHomClass
Submonoid.map_le_iff_le_comap
nonZeroDivisors_le_comap
map_zero πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
CommMonoidWithZero.toCommMonoid
instFunLike
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”surj
MulZeroClass.zero_mul
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
MulZeroClass.mul_zero
mk'_eq_zero_iff πŸ“–mathematicalβ€”mk'
CommMonoidWithZero.toCommMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”map_units
mk'_spec
MulZeroClass.zero_mul
map_eq_zero_iff
mk'_zero πŸ“–mathematicalβ€”mk'
CommMonoidWithZero.toCommMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”eq_mk'_iff_mul_eq
MulZeroClass.zero_mul
map_zero
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
β€”noZeroDivisors_iff_forall_mem_nonZeroDivisors
surj
IsUnit.mul_left_eq_zero
map_units
map_zero
mul_mem_nonZeroDivisors
map_nonZeroDivisors_le
mem_nonZeroDivisors_of_ne_zero
nonZeroDivisors_le_comap πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Submonoid.comap
Submonoid.LocalizationMap
CommMonoidWithZero.toCommMonoid
instFunLike
instMonoidHomClass
β€”instMonoidHomClass
surj
IsUnit.mul_left_eq_zero
map_units
map_eq_zero_iff
mul_right_mem_nonZeroDivisorsRight_eq_zero_iff
map_mul
MonoidHomClass.toMulHomClass
mul_right_comm
nonZeroDivisorsRight_eq_nonZeroDivisors
nontrivial πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
Nontrivialβ€”not_subsingleton_iff_nontrivial
subsingleton_iff
sec_zero_fst πŸ“–mathematicalβ€”DFunLike.coe
Submonoid.LocalizationMap
CommMonoidWithZero.toCommMonoid
instFunLike
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
sec
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”sec_spec'
MulZeroClass.mul_zero
subsingleton πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”β€”mk'_sec
eq
MulZeroClass.zero_mul
subsingleton_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”exists_of_eq
mul_one
MulZeroClass.mul_zero
subsingleton

(root)

Definitions

NameCategoryTheorems
MonoidWithZero πŸ“–CompDataβ€”

---

← Back to Index