Localizations of commutative monoids with zeroes #
theorem
Submonoid.LocalizationMap.subsingleton
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
(h : 0 ∈ S)
:
If S contains 0 then the localization at S is trivial.
theorem
Submonoid.LocalizationMap.subsingleton_iff
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
:
theorem
Submonoid.LocalizationMap.nontrivial
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
(h : 0 ∉ S)
:
theorem
Submonoid.LocalizationMap.map_zero
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
:
theorem
Submonoid.IsLocalizationMap.map_zero
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
{F : Type u_4}
[FunLike F M N]
[MulHomClass F M N]
{f : F}
(hf : S.IsLocalizationMap ⇑f)
:
instance
Submonoid.instMonoidWithZeroHomClassLocalizationMap
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
:
MonoidWithZeroHomClass (S.LocalizationMap N) M N
instance
Localization.instCommMonoidWithZero
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
:
Equations
@[simp]
theorem
Submonoid.LocalizationMap.sec_zero_fst
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
{f : S.LocalizationMap N}
:
noncomputable def
Submonoid.LocalizationMap.lift₀
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
{P : Type u_3}
[CommMonoidWithZero P]
(f : S.LocalizationMap N)
(g : M →*₀ P)
(hg : ∀ (y : ↥S), IsUnit (g ↑y))
:
Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M and a map of
CommMonoidWithZeros g : M →*₀ P such that g y is invertible for all y : S, the
homomorphism induced from N to P sending z : N to g x * (g y)⁻¹, where (x, y) : M × S
are such that z = f x * (f y)⁻¹.
Equations
Instances For
theorem
Submonoid.LocalizationMap.lift₀_def
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
{P : Type u_3}
[CommMonoidWithZero P]
(f : S.LocalizationMap N)
(g : M →*₀ P)
(hg : ∀ (y : ↥S), IsUnit (g ↑y))
:
theorem
Submonoid.LocalizationMap.lift₀_apply
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
{P : Type u_3}
[CommMonoidWithZero P]
(f : S.LocalizationMap N)
(g : M →*₀ P)
(hg : ∀ (y : ↥S), IsUnit (g ↑y))
(x : N)
:
theorem
Submonoid.LocalizationMap.isCancelMulZero
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
[IsCancelMulZero M]
:
Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M,
if M is a cancellative monoid with zero, and all elements of S are
regular, then N is a cancellative monoid with zero.
theorem
Submonoid.LocalizationMap.map_eq_zero_iff
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
{m : M}
:
theorem
Submonoid.LocalizationMap.mk'_eq_zero_iff
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
(m : M)
(s : ↥S)
:
@[simp]
theorem
Submonoid.LocalizationMap.mk'_zero
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
(s : ↥S)
:
theorem
Submonoid.LocalizationMap.nonZeroDivisors_le_comap
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
:
theorem
Submonoid.LocalizationMap.map_nonZeroDivisors_le
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
:
theorem
Submonoid.LocalizationMap.noZeroDivisors
{M : Type u_1}
[CommMonoidWithZero M]
{S : Submonoid M}
{N : Type u_2}
[CommMonoidWithZero N]
(f : S.LocalizationMap N)
[NoZeroDivisors M]
: