Documentation Verification Report

Support

πŸ“ Source: Mathlib/GroupTheory/Perm/Support.lean

Statistics

MetricCount
DefinitionsIsSwap, support
2
Theoremscard_support_mul, commute, conj, disjoint_support, inv_left, inv_right, mem_imp, mono, mul_apply_eq_iff, mul_eq_one_iff, mul_left, mul_right, pow_disjoint_pow, support_mul, symmetric, zpow_disjoint_zpow, of_subtype_isSwap, apply_mem_support, apply_pow_apply_eq_iff, apply_zpow_apply_eq_iff, card_support_conj, card_support_eq_two, card_support_eq_zero, card_support_extend_domain, card_support_le_one, card_support_ne_one, card_support_prod_list_of_pairwise_disjoint, card_support_swap, card_support_swap_mul, coe_support_eq_set_support, disjoint_comm, disjoint_conj, disjoint_iff_disjoint_support, disjoint_iff_eq_or_eq, disjoint_inv_left_iff, disjoint_inv_right_iff, disjoint_noncommProd_right, disjoint_one_left, disjoint_one_right, disjoint_prod_perm, disjoint_prod_right, disjoint_refl_iff, disjoint_swap_swap, eq_on_support_mem_disjoint, exists_mem_support_of_mem_support_prod, fixed_point_card_lt_of_ne_one, instSymmDisjoint, isInvariant_of_support_le, mem_support, mem_support_iff_of_commute, mem_support_of_mem_noncommProd_support, mem_support_swap_mul_imp_mem_support_ne, ne_and_ne_of_swap_mul_apply_ne_self, nodup_of_pairwise_disjoint, notMem_support, ofSubtype_eq_iff, ofSubtype_swap_eq, one_lt_card_support_of_ne_one, pow_apply_eq_of_apply_apply_eq_self, pow_apply_eq_self_of_apply_eq_self, pow_apply_mem_support, pow_eq_on_of_mem_support, set_support_apply_mem, set_support_inv_eq, set_support_mul_subset, set_support_symm_eq, set_support_zpow_subset, support_congr, support_conj, support_eq_empty_iff, support_extend_domain, support_inv, support_le_prod_of_mem, support_mul_le, support_noncommProd, support_ofSubtype, support_one, support_pow_le, support_prod_le, support_prod_of_pairwise_disjoint, support_refl, support_subtypePerm, support_swap, support_swap_iff, support_swap_mul_eq, support_swap_mul_ge_support_diff, support_swap_mul_swap, support_zpow_le, two_le_card_support_of_ne_one, zpow_apply_eq_of_apply_apply_eq_self, zpow_apply_eq_self_of_apply_eq_self, zpow_apply_mem_support
92
Total94

Equiv.Perm

Definitions

NameCategoryTheorems
IsSwap πŸ“–MathDef
8 mathmath: closure_isSwap, mem_closure_isSwap', swap_isSwap_iff, isSwap_iff_cycleType, Polynomial.Splits.toPermHom_apply_eq_one_or_isSwap_of_ncard_le_of_mem_inertia, card_support_eq_two, mclosure_isSwap, has_swap_mem_of_lt_stabilizer
support πŸ“–CompOp
119 mathmath: support_closure_subset_union, SameCycle.exists_pow_eq, mem_toList_iff, List.support_formPerm_le, support_prod_of_pairwise_disjoint, cycleType_eq', card_support_swap_mul, card_support_le_one, cycleType_eq, support_eq_empty_iff, IsCycle.nonempty_support, notMem_support, OnCycleFactors.mem_range_toPermHom_iff', support_cycleOf_le, Basis.mem_support_self', mem_support_iff_of_commute, support_one, support_cycleOf_nonempty, IsThreeCycle.support_eq_iff_mem_support, SameCycle.mem_support_iff, card_support_eq_zero, IsCycle.commute_iff', support_pow_le, isCycleOn_support_cycleOf, support_swap_mul_eq, zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff, support_swap_mul_swap, Disjoint.card_support_mul, commute_iff_of_mem_cycleFactorsFinset, coe_support_eq_set_support, mem_support_cycle_of_cycle, mem_support, two_le_card_support_of_ne_one, mem_support_cycleOf_iff, Basis.card_ofPermHom_support, mem_support_iff_mem_support_of_mem_cycleFactorsFinset, mem_support_cycleOf_iff', Cycle.support_formPerm, Disjoint.support_mul, IsThreeCycle.card_support, support_swap_iff, OnCycleFactors.mem_range_toPermHom'_iff, support_noncommProd, support_cycleOf_eq_nil_iff, toList_eq_nil_iff, IsCycle.cycleType, mem_cycleType_iff, support_zpowers_of_mem_cycleFactorsFinset_le, one_lt_card_support_of_ne_one, support_ofSubtype, IsCycle.support_pow_eq_iff, support_zpow_le, Basis.mem_support_self, support_extend_domain, IsCycle.orderOf, support_mul_le, card_support_prod_list_of_pairwise_disjoint, List.support_formPerm_of_nodup, card_compl_support_modEq, zpow_apply_mem_support, card_support_extend_domain, le_card_support_of_mem_cycleType, Basis.ofPermHom_support, IsThreeCycle.eq_swap_mul_swap_iff_mem_support, support_swap_mul_ge_support_diff, Basis.ofPermHomFun_apply_mem_support_cycle_iff, card_support_swap, support_inv, zpow_eq_zpow_on_iff, IsCycle.zpowersEquivSupport_apply, support_finRotate, IsCycle.support_pow_of_pos_of_lt_orderOf, mem_cycleFactorsFinset_support, pow_apply_mem_support, isPretransitive_of_isCycle_mem, IsThreeCycle.nodup_iff_mem_support, card_support_eq_three_iff, Disjoint.disjoint_support, support_prod_le, support_conj, pow_mod_card_support_cycleOf_self_apply, pow_apply_mem_toList_iff_mem_support, subtypePerm_on_cycleFactorsFinset, apply_mem_support, OnCycleFactors.mem_range_toPermHom_iff, support_pow_coprime, ofSubtype_eq_iff, support_finRotate_of_le, support_refl, cycleOf_mem_cycleFactorsFinset_iff, IsCycle.zpowersEquivSupport_symm_apply, card_support_conj, IsCycle.two_le_card_support, two_le_card_support_cycleOf_iff, two_dvd_card_support, support_swap, IsCycle.sign, card_support_eq_two, Polynomial.Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv, IsCycle.forall_commute_iff, parts_partition, cycleType_def, length_toList, eq_cycleOf_of_mem_cycleFactorsFinset_iff, two_le_length_toList_iff_mem_support, IsCycle.commute_iff, CycleType.count_def, ofSubtype_support_disjoint, isCycleOn_support_of_mem_cycleFactorsFinset, sum_cycleType, cycle_zpow_mem_support_iff, List.zipWith_swap_prod_support, mem_cycleFactorsFinset_support_le, mem_conj_support, disjoint_iff_disjoint_support, support_le_prod_of_mem, support_subtypePerm, Finset.exists_cycleOn, IsCycle.isConj_iff

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”mem_support
Equiv.apply_eq_iff_eq
apply_pow_apply_eq_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
β€”mul_apply
Commute.self_pow
Equiv.apply_eq_iff_eq
apply_zpow_apply_eq_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”mul_apply
Commute.self_zpow
Equiv.apply_eq_iff_eq
card_support_conj πŸ“–mathematicalβ€”Finset.card
support
Equiv.Perm
instMul
instInv
β€”support_conj
Finset.card_map
card_support_eq_two πŸ“–mathematicalβ€”Finset.card
support
IsSwap
β€”Finset.card_eq_succ
Finset.card_eq_one
Finset.mem_singleton
ext
mem_support
Finset.mem_insert
Equiv.swap_apply_of_ne_of_ne
Equiv.apply_eq_iff_eq
Equiv.swap_apply_left
Equiv.swap_apply_right
card_support_swap
card_support_eq_zero πŸ“–mathematicalβ€”Finset.card
support
Equiv.Perm
instOne
β€”Finset.card_eq_zero
support_eq_empty_iff
card_support_extend_domain πŸ“–mathematicalβ€”Finset.card
support
extendDomain
β€”support_extend_domain
Finset.card_map
card_support_le_one πŸ“–mathematicalβ€”Finset.card
support
Equiv.Perm
instOne
β€”le_iff_lt_or_eq
card_support_eq_zero
card_support_ne_one
card_support_ne_one πŸ“–β€”β€”β€”β€”ne_of_eq_of_ne
card_support_eq_zero
zero_ne_one
ne_of_gt
one_lt_card_support_of_ne_one
card_support_prod_list_of_pairwise_disjoint πŸ“–mathematicalEquiv.Perm
Disjoint
Finset.card
support
instMul
instOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Finset
β€”card_support_eq_zero
Disjoint.card_support_mul
disjoint_prod_right
card_support_swap πŸ“–mathematicalβ€”Finset.card
support
Equiv.swap
β€”Multiset.nodup_cons
support_swap
Finset.cons_eq_insert
card_support_swap_mul πŸ“–mathematicalβ€”Finset.card
support
Equiv.Perm
instMul
Equiv.swap
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”Finset.card_lt_card
mem_support_swap_mul_imp_mem_support_ne
mem_support
Equiv.swap_apply_right
coe_support_eq_set_support πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
support
setOf
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”Set.ext
disjoint_comm πŸ“–mathematicalβ€”Disjointβ€”Disjoint.symm
disjoint_conj πŸ“–mathematicalβ€”Disjoint
Equiv.Perm
instMul
instInv
β€”Equiv.forall_congr
disjoint_iff_disjoint_support πŸ“–mathematicalβ€”Disjoint
Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
β€”β€”
disjoint_iff_eq_or_eq πŸ“–mathematicalβ€”Disjoint
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
disjoint_inv_left_iff πŸ“–mathematicalβ€”Disjoint
Equiv.Perm
instInv
β€”Disjoint.inv_left
disjoint_inv_right_iff πŸ“–mathematicalβ€”Disjoint
Equiv.Perm
instInv
β€”disjoint_comm
disjoint_inv_left_iff
disjoint_noncommProd_right πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Commute
Equiv.Perm
instMul
Disjoint
Finset.noncommProd
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
β€”Finset.noncommProd_induction
Disjoint.mul_right
disjoint_one_right
disjoint_one_left πŸ“–mathematicalβ€”Disjoint
Equiv.Perm
instOne
β€”β€”
disjoint_one_right πŸ“–mathematicalβ€”Disjoint
Equiv.Perm
instOne
β€”β€”
disjoint_prod_perm πŸ“–mathematicalEquiv.Perm
Disjoint
instMul
instOne
β€”List.Perm.prod_eq'
Disjoint.commute
disjoint_prod_right πŸ“–mathematicalDisjointEquiv.Perm
instMul
instOne
β€”disjoint_one_right
Disjoint.mul_right
disjoint_refl_iff πŸ“–mathematicalβ€”Disjoint
Equiv.Perm
instOne
β€”ext
disjoint_one_left
disjoint_swap_swap πŸ“–mathematicalβ€”Disjoint
Equiv.swap
β€”β€”
eq_on_support_mem_disjoint πŸ“–mathematicalEquiv.Perm
Disjoint
Finset
Finset.instMembership
support
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
instMul
instOne
β€”mul_apply
notMem_support
Disjoint.mem_imp
disjoint_prod_right
Disjoint.symm
EquivLike.toEmbeddingLike
exists_mem_support_of_mem_support_prod πŸ“–β€”Finset
Finset.instMembership
support
Equiv.Perm
instMul
instOne
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
mul_apply
fixed_point_card_lt_of_ne_one πŸ“–mathematicalβ€”Finset.card
Finset.filter
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Finset.univ
Fintype.card
β€”Finset.card_compl
Finset.compl_filter
one_lt_card_support_of_ne_one
instSymmDisjoint πŸ“–mathematicalβ€”Equiv.Perm
Disjoint
β€”Disjoint.symmetric
isInvariant_of_support_le πŸ“–mathematicalFinset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
Finset.instMembership
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”apply_mem_support
notMem_support
mem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
β€”support.eq_1
Finset.mem_filter
Finset.mem_univ
mem_support_iff_of_commute πŸ“–mathematicalCommute
Equiv.Perm
instMul
Finset
Finset.instMembership
support
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”mul_apply
Equiv.apply_eq_iff_eq
mem_support_of_mem_noncommProd_support πŸ“–β€”Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Equiv.Perm
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Finset.instMembership
support
Finset.noncommProd
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Finset.induction
Finset.coe_empty
instIsEmptyFalse
support_one
Set.Pairwise.mono
Finset.mem_insert_of_mem
Finset.noncommProd_insert_of_notMem
Finset.mem_of_subset
support_mul_le
Finset.sup_eq_union
Finset.notMem_union
Finset.mem_insert_self
mem_support_swap_mul_imp_mem_support_ne πŸ“–β€”Finset
Finset.instMembership
support
Equiv.Perm
instMul
Equiv.swap
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”Equiv.injective
ne_and_ne_of_swap_mul_apply_ne_self πŸ“–β€”β€”β€”β€”Equiv.injective
nodup_of_pairwise_disjoint πŸ“–β€”Equiv.Perm
instOne
Disjoint
β€”β€”ext
notMem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
ofSubtype_eq_iff πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
Finset.decidableMem
subtypePerm
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
β€”ofSubtype_apply_of_not_mem
mem_support
ofSubtype_apply_of_mem
subtypePerm_apply
isInvariant_of_support_le
notMem_support
Finset.notMem_mono
ofSubtype_swap_eq πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
Equiv.swap
β€”Equiv.ext
Equiv.swap_apply_def
ofSubtype_apply_of_mem
Subtype.coe_eta
Equiv.swap_apply_left
Equiv.swap_apply_right
Equiv.swap_apply_of_ne_of_ne
ofSubtype_apply_of_not_mem
one_lt_card_support_of_ne_one πŸ“–mathematicalβ€”Finset.card
support
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
ext
Equiv.apply_eq_iff_eq
pow_apply_eq_of_apply_apply_eq_self πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNatβ€”pow_succ'
mul_apply
pow_apply_eq_self_of_apply_eq_self πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNatβ€”pow_succ
mul_apply
pow_apply_mem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instPowNat
β€”β€”
pow_eq_on_of_mem_support πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Finset
Finset.instMembership
Finset.instInter
support
instPowNatβ€”pow_zero
pow_succ
mul_apply
Finset.mem_inter
apply_mem_support
set_support_apply_mem πŸ“–mathematicalβ€”Set
Set.instMembership
setOf
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”EquivLike.toEmbeddingLike
set_support_inv_eq πŸ“–mathematicalβ€”setOf
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.Perm
β€”set_support_symm_eq
set_support_mul_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
setOf
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
instMul
Set.instUnion
β€”β€”
set_support_symm_eq πŸ“–mathematicalβ€”setOf
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.Perm
β€”Set.ext
set_support_zpow_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
setOf
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”zpow_apply_eq_self_of_apply_eq_self
support_congr πŸ“–β€”Finset
Finset.instHasSubset
support
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”β€”
support_conj πŸ“–mathematicalβ€”support
Equiv.Perm
instMul
instInv
Finset.map
Equiv.toEmbedding
β€”Finset.ext
support_eq_empty_iff πŸ“–mathematicalβ€”support
Finset
Finset.instEmptyCollection
Equiv.Perm
instOne
β€”β€”
support_extend_domain πŸ“–mathematicalβ€”support
extendDomain
Finset.map
Equiv.asEmbedding
β€”Finset.ext
extendDomain_apply_subtype
extendDomain_apply_not_subtype
Subtype.prop
support_inv πŸ“–mathematicalβ€”support
Equiv.Perm
instInv
β€”inv_eq_iff_eq
support_le_prod_of_mem πŸ“–mathematicalEquiv.Perm
Disjoint
Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
instMul
instOne
β€”mem_support
eq_on_support_mem_disjoint
support_mul_le πŸ“–mathematicalβ€”Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
Equiv.Perm
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Finset.instLattice
β€”Finset.mem_union
mem_support
mul_apply
not_and_or
not_imp_not
support_noncommProd πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Disjoint
support
Finset.noncommProd
Equiv.Perm
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
Set.Pairwise.imp
Commute
instMul
Disjoint.commute
Finset.biUnion
β€”Finset.induction_on
Set.Pairwise.imp
Disjoint.commute
support_one
Set.Pairwise.mono
Finset.coe_insert
Finset.mem_insert_of_mem
Finset.noncommProd_insert_of_notMem
Finset.biUnion_insert
Disjoint.support_mul
disjoint_noncommProd_right
support_ofSubtype πŸ“–mathematicalβ€”support
DFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MonoidHom.instFunLike
ofSubtype
Finset.map
Function.Embedding.subtype
Subtype.fintype
β€”Finset.ext
ofSubtype_apply_of_mem
ofSubtype_apply_of_not_mem
support_one πŸ“–mathematicalβ€”support
Equiv.Perm
instOne
Finset
Finset.instEmptyCollection
β€”support_eq_empty_iff
support_pow_le πŸ“–mathematicalβ€”Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
Equiv.Perm
instPowNat
β€”mem_support
pow_apply_eq_self_of_apply_eq_self
support_prod_le πŸ“–mathematicalβ€”Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
Equiv.Perm
instMul
instOne
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Finset.instLattice
Bot.bot
BooleanAlgebra.toBot
Finset.booleanAlgebra
β€”support_one
LE.le.trans
support_mul_le
sup_le_sup
le_rfl
support_prod_of_pairwise_disjoint πŸ“–mathematicalEquiv.Perm
Disjoint
support
instMul
instOne
Finset
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Finset.instLattice
Bot.bot
BooleanAlgebra.toBot
Finset.booleanAlgebra
β€”support_one
disjoint_prod_right
Disjoint.support_mul
support_refl πŸ“–mathematicalβ€”support
Equiv.refl
Finset
Finset.instEmptyCollection
β€”support_one
support_subtypePerm πŸ“–mathematicalFinset
SetLike.instMembership
Finset.instSetLike
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
support
Finset.Subtype.fintype
subtypePerm
Finset.filter
Finset.univ
β€”Finset.ext
support_swap πŸ“–mathematicalβ€”support
Equiv.swap
Finset
Finset.instInsert
Finset.instSingleton
β€”Finset.ext
Equiv.swap_apply_left
Equiv.swap_apply_right
Equiv.swap_apply_of_ne_of_ne
support_swap_iff πŸ“–mathematicalβ€”support
Equiv.swap
Finset
Finset.instInsert
Finset.instSingleton
β€”Equiv.swap_self
support_refl
Finset.insert_eq_of_mem
support_swap
support_swap_mul_eq πŸ“–mathematicalβ€”support
Equiv.Perm
instMul
Equiv.swap
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike
Finset
Finset.instSDiff
Finset.instSingleton
β€”Equiv.swap_self
Finset.sdiff_singleton_eq_erase
Finset.erase_eq_of_notMem
notMem_support
Finset.ext
Equiv.swap_apply_right
Equiv.swap_apply_of_ne_of_ne
EquivLike.toEmbeddingLike
Equiv.swap_apply_left
Equiv.injective
support_swap_mul_ge_support_diff πŸ“–mathematicalβ€”Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
Finset.instSDiff
support
Finset.instInsert
Finset.instSingleton
Equiv.Perm
instMul
Equiv.swap
β€”Equiv.swap_apply_of_ne_of_ne
Equiv.swap_apply_eq_iff
support_swap_mul_swap πŸ“–mathematicalβ€”support
Equiv.Perm
instMul
Equiv.swap
Finset
Finset.instInsert
Finset.instSingleton
β€”le_antisymm
support_swap
Finset.union_insert
Finset.insert_union
Finset.insert_eq_of_mem
support_mul_le
Equiv.swap_apply_of_ne_of_ne
Equiv.swap_apply_left
Equiv.swap_apply_right
support_zpow_le πŸ“–mathematicalβ€”Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
support
Equiv.Perm
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”mem_support
zpow_apply_eq_self_of_apply_eq_self
two_le_card_support_of_ne_one πŸ“–mathematicalβ€”Finset.card
support
β€”one_lt_card_support_of_ne_one
zpow_apply_eq_of_apply_apply_eq_self πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”pow_apply_eq_of_apply_apply_eq_self
zpow_negSucc
inv_eq_iff_eq
Equiv.injective
mul_apply
pow_succ'
pow_succ
zpow_apply_eq_self_of_apply_eq_self πŸ“–mathematicalDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”pow_apply_eq_self_of_apply_eq_self
zpow_negSucc
inv_eq_iff_eq
zpow_apply_mem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
β€”β€”

Equiv.Perm.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
card_support_mul πŸ“–mathematicalEquiv.Perm.DisjointFinset.card
Equiv.Perm.support
Equiv.Perm
Equiv.Perm.instMul
β€”Finset.card_union_of_disjoint
disjoint_support
Finset.ext
support_mul
commute πŸ“–mathematicalEquiv.Perm.DisjointCommute
Equiv.Perm
Equiv.Perm.instMul
β€”Equiv.ext
Equiv.injective
conj πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
Equiv.Perm.instMul
Equiv.Perm.instInv
β€”Equiv.Perm.disjoint_conj
disjoint_support πŸ“–mathematicalEquiv.Perm.DisjointDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Equiv.Perm.support
β€”Equiv.Perm.disjoint_iff_disjoint_support
inv_left πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
Equiv.Perm.instInv
β€”Equiv.Perm.inv_eq_iff_eq
inv_right πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
Equiv.Perm.instInv
β€”symm
inv_left
mem_imp πŸ“–β€”Equiv.Perm.Disjoint
Finset
Finset.instMembership
Equiv.Perm.support
β€”β€”Finset.disjoint_left
disjoint_support
mono πŸ“–β€”Equiv.Perm.Disjoint
Finset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
Equiv.Perm.support
β€”β€”Equiv.Perm.disjoint_iff_disjoint_support
Disjoint.mono
mul_apply_eq_iff πŸ“–mathematicalEquiv.Perm.DisjointDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.instMul
β€”Equiv.injective
Equiv.Perm.mul_apply
mul_eq_one_iff πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
Equiv.Perm.instMul
Equiv.Perm.instOne
β€”mul_apply_eq_iff
mul_left πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
Equiv.Perm.instMul
β€”β€”
mul_right πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
Equiv.Perm.instMul
β€”Equiv.Perm.disjoint_comm
mul_left
symm
pow_disjoint_pow πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
Equiv.Perm.instPowNat
β€”zpow_disjoint_zpow
support_mul πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm.support
Equiv.Perm
Equiv.Perm.instMul
Finset
Finset.instUnion
β€”le_antisymm
Equiv.Perm.support_mul_le
Finset.mem_union
Equiv.Perm.mem_support
Equiv.Perm.mul_apply
not_and_or
not_imp_not
Equiv.apply_eq_iff_eq
symmetric πŸ“–mathematicalβ€”Symmetric
Equiv.Perm
Equiv.Perm.Disjoint
β€”symm
zpow_disjoint_zpow πŸ“–mathematicalEquiv.Perm.DisjointEquiv.Perm
DivInvMonoid.toZPow
Group.toDivInvMonoid
Equiv.Perm.permGroup
β€”Equiv.Perm.zpow_apply_eq_self_of_apply_eq_self

Equiv.Perm.IsSwap

Theorems

NameKindAssumesProvesValidatesDepends On
of_subtype_isSwap πŸ“–mathematicalEquiv.Perm.IsSwapDFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
MonoidHom.instFunLike
Equiv.Perm.ofSubtype
β€”Equiv.Perm.ofSubtype_swap_eq

---

← Back to Index