π Source: Mathlib/GroupTheory/Perm/Support.lean
IsSwap
support
card_support_mul
commute
conj
disjoint_support
inv_left
inv_right
mem_imp
mono
mul_apply_eq_iff
mul_eq_one_iff
mul_left
mul_right
pow_disjoint_pow
support_mul
symmetric
zpow_disjoint_zpow
of_subtype_isSwap
apply_mem_support
apply_pow_apply_eq_iff
apply_zpow_apply_eq_iff
card_support_conj
card_support_eq_two
card_support_eq_zero
card_support_extend_domain
card_support_le_one
card_support_ne_one
card_support_prod_list_of_pairwise_disjoint
card_support_swap
card_support_swap_mul
coe_support_eq_set_support
disjoint_comm
disjoint_conj
disjoint_iff_disjoint_support
disjoint_iff_eq_or_eq
disjoint_inv_left_iff
disjoint_inv_right_iff
disjoint_noncommProd_right
disjoint_one_left
disjoint_one_right
disjoint_prod_perm
disjoint_prod_right
disjoint_refl_iff
disjoint_swap_swap
eq_on_support_mem_disjoint
exists_mem_support_of_mem_support_prod
fixed_point_card_lt_of_ne_one
instSymmDisjoint
isInvariant_of_support_le
mem_support
mem_support_iff_of_commute
mem_support_of_mem_noncommProd_support
mem_support_swap_mul_imp_mem_support_ne
ne_and_ne_of_swap_mul_apply_ne_self
nodup_of_pairwise_disjoint
notMem_support
ofSubtype_eq_iff
ofSubtype_swap_eq
one_lt_card_support_of_ne_one
pow_apply_eq_of_apply_apply_eq_self
pow_apply_eq_self_of_apply_eq_self
pow_apply_mem_support
pow_eq_on_of_mem_support
set_support_apply_mem
set_support_inv_eq
set_support_mul_subset
set_support_symm_eq
set_support_zpow_subset
support_congr
support_conj
support_eq_empty_iff
support_extend_domain
support_inv
support_le_prod_of_mem
support_mul_le
support_noncommProd
support_ofSubtype
support_one
support_pow_le
support_prod_le
support_prod_of_pairwise_disjoint
support_refl
support_subtypePerm
support_swap
support_swap_iff
support_swap_mul_eq
support_swap_mul_ge_support_diff
support_swap_mul_swap
support_zpow_le
two_le_card_support_of_ne_one
zpow_apply_eq_of_apply_apply_eq_self
zpow_apply_eq_self_of_apply_eq_self
zpow_apply_mem_support
closure_isSwap
mem_closure_isSwap'
swap_isSwap_iff
isSwap_iff_cycleType
Polynomial.Splits.toPermHom_apply_eq_one_or_isSwap_of_ncard_le_of_mem_inertia
mclosure_isSwap
has_swap_mem_of_lt_stabilizer
support_closure_subset_union
SameCycle.exists_pow_eq
mem_toList_iff
List.support_formPerm_le
cycleType_eq'
cycleType_eq
IsCycle.nonempty_support
OnCycleFactors.mem_range_toPermHom_iff'
support_cycleOf_le
Basis.mem_support_self'
support_cycleOf_nonempty
IsThreeCycle.support_eq_iff_mem_support
SameCycle.mem_support_iff
IsCycle.commute_iff'
isCycleOn_support_cycleOf
zpow_apply_mem_support_of_mem_cycleFactorsFinset_iff
Disjoint.card_support_mul
commute_iff_of_mem_cycleFactorsFinset
mem_support_cycle_of_cycle
mem_support_cycleOf_iff
Basis.card_ofPermHom_support
mem_support_iff_mem_support_of_mem_cycleFactorsFinset
mem_support_cycleOf_iff'
Cycle.support_formPerm
Disjoint.support_mul
IsThreeCycle.card_support
OnCycleFactors.mem_range_toPermHom'_iff
support_cycleOf_eq_nil_iff
toList_eq_nil_iff
IsCycle.cycleType
mem_cycleType_iff
support_zpowers_of_mem_cycleFactorsFinset_le
IsCycle.support_pow_eq_iff
Basis.mem_support_self
IsCycle.orderOf
List.support_formPerm_of_nodup
card_compl_support_modEq
le_card_support_of_mem_cycleType
Basis.ofPermHom_support
IsThreeCycle.eq_swap_mul_swap_iff_mem_support
Basis.ofPermHomFun_apply_mem_support_cycle_iff
zpow_eq_zpow_on_iff
IsCycle.zpowersEquivSupport_apply
support_finRotate
IsCycle.support_pow_of_pos_of_lt_orderOf
mem_cycleFactorsFinset_support
isPretransitive_of_isCycle_mem
IsThreeCycle.nodup_iff_mem_support
card_support_eq_three_iff
Disjoint.disjoint_support
pow_mod_card_support_cycleOf_self_apply
pow_apply_mem_toList_iff_mem_support
subtypePerm_on_cycleFactorsFinset
OnCycleFactors.mem_range_toPermHom_iff
support_pow_coprime
support_finRotate_of_le
cycleOf_mem_cycleFactorsFinset_iff
IsCycle.zpowersEquivSupport_symm_apply
IsCycle.two_le_card_support
two_le_card_support_cycleOf_iff
two_dvd_card_support
IsCycle.sign
Polynomial.Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv
IsCycle.forall_commute_iff
parts_partition
cycleType_def
length_toList
eq_cycleOf_of_mem_cycleFactorsFinset_iff
two_le_length_toList_iff_mem_support
IsCycle.commute_iff
CycleType.count_def
ofSubtype_support_disjoint
isCycleOn_support_of_mem_cycleFactorsFinset
sum_cycleType
cycle_zpow_mem_support_iff
List.zipWith_swap_prod_support
mem_cycleFactorsFinset_support_le
mem_conj_support
Finset.exists_cycleOn
IsCycle.isConj_iff
Finset
Finset.instMembership
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.apply_eq_iff_eq
instPowNat
mul_apply
Commute.self_pow
DivInvMonoid.toZPow
Group.toDivInvMonoid
permGroup
Commute.self_zpow
Finset.card
instMul
instInv
Finset.card_map
Finset.card_eq_succ
Finset.card_eq_one
Finset.mem_singleton
ext
Finset.mem_insert
Equiv.swap_apply_of_ne_of_ne
Equiv.swap_apply_left
Equiv.swap_apply_right
instOne
Finset.card_eq_zero
extendDomain
le_iff_lt_or_eq
ne_of_eq_of_ne
zero_ne_one
ne_of_gt
Disjoint
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Equiv.swap
Multiset.nodup_cons
Finset.cons_eq_insert
Finset.card_lt_card
SetLike.coe
Finset.instSetLike
setOf
Set.ext
Disjoint.symm
Equiv.forall_congr
Finset.partialOrder
Finset.instOrderBot
Disjoint.inv_left
Set.Pairwise
Commute
Finset.noncommProd
DivInvMonoid.toMonoid
Finset.noncommProd_induction
Disjoint.mul_right
List.Perm.prod_eq'
Disjoint.commute
Disjoint.mem_imp
EquivLike.toEmbeddingLike
Mathlib.Tactic.Contrapose.contraposeβ
Mathlib.Tactic.Push.not_and_eq
Finset.filter
Finset.univ
Fintype.card
Finset.card_compl
Finset.compl_filter
Disjoint.symmetric
Preorder.toLE
PartialOrder.toPreorder
support.eq_1
Finset.mem_filter
Finset.mem_univ
Function.onFun
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Finset.induction
Finset.coe_empty
instIsEmptyFalse
Set.Pairwise.mono
Finset.mem_insert_of_mem
Finset.noncommProd_insert_of_notMem
Finset.mem_of_subset
Finset.sup_eq_union
Finset.notMem_union
Finset.mem_insert_self
Equiv.injective
MonoidHom
MonoidHom.instFunLike
ofSubtype
Finset.decidableMem
subtypePerm
ofSubtype_apply_of_not_mem
ofSubtype_apply_of_mem
subtypePerm_apply
Finset.notMem_mono
Equiv.ext
Equiv.swap_apply_def
Subtype.coe_eta
Mathlib.Tactic.Contrapose.contraposeβ
pow_succ'
pow_succ
Finset.instInter
pow_zero
Finset.mem_inter
Set
Set.instMembership
Equiv
Equiv.symm
Set.instHasSubset
Set.instUnion
Finset.instHasSubset
Finset.map
Equiv.toEmbedding
Finset.ext
Finset.instEmptyCollection
Equiv.asEmbedding
extendDomain_apply_subtype
extendDomain_apply_not_subtype
Subtype.prop
inv_eq_iff_eq
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Finset.instLattice
Finset.mem_union
not_and_or
not_imp_not
Set.Pairwise.imp
Finset.biUnion
Finset.induction_on
Finset.coe_insert
Finset.biUnion_insert
Function.Embedding.subtype
Subtype.fintype
Bot.bot
BooleanAlgebra.toBot
Finset.booleanAlgebra
LE.le.trans
sup_le_sup
le_rfl
Equiv.refl
SetLike.instMembership
Finset.Subtype.fintype
Finset.instInsert
Finset.instSingleton
Equiv.swap_self
Finset.insert_eq_of_mem
Finset.instSDiff
Finset.sdiff_singleton_eq_erase
Finset.erase_eq_of_notMem
Equiv.swap_apply_eq_iff
le_antisymm
Finset.union_insert
Finset.insert_union
zpow_negSucc
Equiv.Perm.Disjoint
Equiv.Perm.support
Equiv.Perm.instMul
Finset.card_union_of_disjoint
Equiv.Perm.instInv
Equiv.Perm.disjoint_conj
Equiv.Perm.disjoint_iff_disjoint_support
Equiv.Perm.inv_eq_iff_eq
symm
Finset.disjoint_left
Disjoint.mono
Equiv.Perm.mul_apply
Equiv.Perm.instOne
Equiv.Perm.disjoint_comm
Equiv.Perm.instPowNat
Finset.instUnion
Equiv.Perm.support_mul_le
Equiv.Perm.mem_support
Symmetric
Equiv.Perm.permGroup
Equiv.Perm.zpow_apply_eq_self_of_apply_eq_self
Equiv.Perm.IsSwap
Equiv.Perm.ofSubtype
Equiv.Perm.ofSubtype_swap_eq
---
β Back to Index