support of a permutation #
Main definitions #
In the following, f g : Equiv.Perm α.
Equiv.Perm.Disjoint: two permutationsfandgareDisjointif every element is fixed either byf, or byg. Equivalently,fandgareDisjointiff theirsupportare disjoint.Equiv.Perm.IsSwap:f = swap x yforx ≠ y.Equiv.Perm.support: the elementsx : αthat are not fixed byf.
Assume α is a Fintype:
Equiv.Perm.fixed_point_card_lt_of_ne_one fsays thatfhas strictly less thanFintype.card α - 1fixed points, unlessf = 1. (Equivalently,f.supporthas at least 2 elements.)
Two permutations f and g are Disjoint if their supports are disjoint, i.e.,
every element is fixed either by f, or by g.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Equiv.Perm.disjoint_prod_perm
{α : Type u_1}
{l₁ l₂ : List (Perm α)}
(hl : List.Pairwise Disjoint l₁)
(hp : l₁.Perm l₂)
:
theorem
Equiv.Perm.nodup_of_pairwise_disjoint
{α : Type u_1}
{l : List (Perm α)}
(h1 : 1 ∉ l)
(h2 : List.Pairwise Disjoint l)
:
l.Nodup
@[simp]
theorem
Equiv.Perm.ofSubtype_swap_eq
{α : Type u_1}
[DecidableEq α]
{p : α → Prop}
[DecidablePred p]
(x y : Subtype p)
:
theorem
Equiv.Perm.IsSwap.of_subtype_isSwap
{α : Type u_1}
[DecidableEq α]
{p : α → Prop}
[DecidablePred p]
{f : Perm (Subtype p)}
(h : f.IsSwap)
:
@[deprecated Equiv.Perm.set_support_symm_eq (since := "2025-11-17")]
Alias of Equiv.Perm.set_support_symm_eq.
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Equiv.Perm.mem_support_iff_of_commute
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{g c : Perm α}
(hgc : Commute g c)
(x : α)
:
If g and c commute, then g stabilizes the support of c
@[simp]
theorem
Equiv.Perm.apply_mem_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f : Perm α}
{x : α}
:
theorem
Equiv.Perm.isInvariant_of_support_le
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{c : Perm α}
{s : Finset α}
(hcs : c.support ≤ s)
(x : α)
:
The support of a permutation is invariant
theorem
Equiv.Perm.ofSubtype_eq_iff
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{g c : Perm α}
{s : Finset α}
(hg : ∀ (x : α), g x ∈ s ↔ x ∈ s)
:
ofSubtype (g.subtypePerm hg) = c ↔ c.support ≤ s ∧ ∀ (hc' : ∀ (x : α), c x ∈ s ↔ x ∈ s), c.subtypePerm hc' = g.subtypePerm hg
A permutation c is the extension of a restriction of g to s iff its support is contained in s and its restriction is that of g
theorem
Equiv.Perm.support_ofSubtype
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{p : α → Prop}
[DecidablePred p]
(u : Perm (Subtype p))
:
theorem
Equiv.Perm.mem_support_of_mem_noncommProd_support
{α : Type u_2}
{β : Type u_3}
[DecidableEq β]
[Fintype β]
{s : Finset α}
{f : α → Perm β}
{comm : (↑s).Pairwise (Function.onFun Commute f)}
{x : β}
(hx : x ∈ (s.noncommProd f comm).support)
:
theorem
Equiv.Perm.disjoint_iff_disjoint_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f g : Perm α}
:
theorem
Equiv.Perm.Disjoint.disjoint_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f g : Perm α}
(h : f.Disjoint g)
:
theorem
Equiv.Perm.support_prod_of_pairwise_disjoint
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(l : List (Perm α))
(h : List.Pairwise Disjoint l)
:
theorem
Equiv.Perm.support_noncommProd
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{ι : Type u_2}
{k : ι → Perm α}
{s : Finset ι}
(hs : (↑s).Pairwise fun (i j : ι) => (k i).Disjoint (k j))
:
theorem
Equiv.Perm.support_zpow_le
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(σ : Perm α)
(n : ℤ)
:
@[simp]
theorem
Equiv.Perm.Disjoint.mem_imp
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f g : Perm α}
(h : f.Disjoint g)
{x : α}
(hx : x ∈ f.support)
:
x ∉ g.support
theorem
Equiv.Perm.eq_on_support_mem_disjoint
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f : Perm α}
{l : List (Perm α)}
(h : f ∈ l)
(hl : List.Pairwise Disjoint l)
(x : α)
:
theorem
Equiv.Perm.support_le_prod_of_mem
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f : Perm α}
{l : List (Perm α)}
(h : f ∈ l)
(hl : List.Pairwise Disjoint l)
:
@[simp]
theorem
Equiv.Perm.support_extend_domain
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{β : Type u_2}
[DecidableEq β]
[Fintype β]
{p : β → Prop}
[DecidablePred p]
(f : α ≃ Subtype p)
{g : Perm α}
:
theorem
Equiv.Perm.card_support_extend_domain
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{β : Type u_2}
[DecidableEq β]
[Fintype β]
{p : β → Prop}
[DecidablePred p]
(f : α ≃ Subtype p)
{g : Perm α}
:
theorem
Equiv.Perm.one_lt_card_support_of_ne_one
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f : Perm α}
(h : f ≠ 1)
:
@[simp]
theorem
Equiv.Perm.two_le_card_support_of_ne_one
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f : Perm α}
(h : f ≠ 1)
:
theorem
Equiv.Perm.card_support_swap
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{x y : α}
(hxy : x ≠ y)
:
@[simp]
theorem
Equiv.Perm.card_support_prod_list_of_pairwise_disjoint
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{l : List (Perm α)}
(h : List.Pairwise Disjoint l)
:
@[simp]
theorem
Equiv.Perm.support_subtypePerm
{α : Type u_1}
[DecidableEq α]
{s : Finset α}
(f : Perm α)
(h : ∀ (x : α), f x ∈ s ↔ x ∈ s)
:
Fixed points #
theorem
Equiv.Perm.fixed_point_card_lt_of_ne_one
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{σ : Perm α}
(h : σ ≠ 1)
:
@[simp]