Documentation Verification Report

ZGroup

πŸ“ Source: Mathlib/GroupTheory/SpecificGroups/ZGroup.lean

Statistics

MetricCount
DefinitionsIsZGroup
1
Theoremscommutator_eq_bot_or_commutator_eq_self, isCyclic_of_isZGroup, smul_mul_inv_trivial_or_surjective, commutator_lt, coprime_commutator_index, exponent_eq_card, instIsCyclicOfFiniteOfIsNilpotent, instIsCyclicSubtypeMemSubgroupOfFactPrime, instIsSolvableOfFinite, instOfIsCyclic, instQuotientSubgroupOfFinite, instSubtypeMemSubgroup, isCyclic_abelianization, isCyclic_commutator, isZGroup, of_injective, of_squarefree, of_surjective, commutator_eq_bot_or_commutator_eq_self, le_center_or_le_commutator, normalizer_le_centralizer_or_le_commutator, not_dvd_card_commutator_or_not_dvd_index_commutator, isZGroup_iff, isZGroup_iff_exists_mulEquiv, isZGroup_of_coprime
25
Total26

IsPGroup

Theorems

NameKindAssumesProvesValidatesDepends On
commutator_eq_bot_or_commutator_eq_self πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
Nat.card
Bracket.bracket
Subgroup.commutator
Bot.bot
Subgroup.instBot
β€”eq_bot_iff
Subgroup.commutator_le
le_antisymm_iff
Subgroup.mul_mem
Subgroup.inv_mem
Subgroup.commutator_mem_commutator
smul_mul_inv_trivial_or_surjective
isCyclic_of_isZGroup πŸ“–mathematicalIsPGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
IsCyclic
Subgroup.zpow
β€”exists_le_sylow
Subgroup.isCyclic_of_le
IsZGroup.instIsCyclicSubtypeMemSubgroupOfFactPrime
smul_mul_inv_trivial_or_surjective πŸ“–mathematicalIsPGroup
Nat.card
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
InvOneClass.toOne
β€”Nat.card_eq_one_iff_unique
one_smul
mul_inv_cancel
One.instNonempty
Nat.finite_of_card_ne_zero
MulDistribMulAction.toMonoidHomZModOfIsCyclic_apply
Int.cast_add
Int.cast_one
sub_eq_iff_eq_add
zpow_add_one
mul_inv_cancel_right
exists_card_eq
ZMod.eq_one_or_isUnit_sub_one
Dvd.dvd.trans
orderOf_map_dvd
orderOf_dvd_natCard
forall_or_exists_not
sub_self
Int.cast_zero
zpow_zero
ZMod.intCast_zmod_cast
zpow_mul
zpow_eq_zpow_iff_modEq
Int.ModEq.of_dvd
ZMod.intCast_eq_intCast_iff
Int.cast_mul
zpow_one

IsZGroup

Theorems

NameKindAssumesProvesValidatesDepends On
commutator_lt πŸ“–mathematicalβ€”Subgroup
Preorder.toLT
PartialOrder.toPreorder
Subgroup.instPartialOrder
commutator
Top.top
Subgroup.instTop
β€”Nat.minFac_prime
LT.lt.ne'
Finite.one_lt_card
isZGroup
IsCyclic.normalizer_le_centralizer
Subgroup.finiteIndex_of_finite
lt_of_le_of_lt
instIsMulCommutativeSubtypeMemSubgroupOfIsCyclic
Abelianization.commutator_subset_ker
Sylow.ne_bot_of_dvd_card
Nat.minFac_dvd
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Subgroup.isComplement'_top_left
not_lt_top_iff
IsCyclic.isComplement'
coprime_commutator_index πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
commutator
Subgroup.index
β€”Sylow.not_dvd_card_commutator_or_not_dvd_index_commutator
instIsCyclicSubtypeMemSubgroupOfFactPrime
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Nat.Prime.not_coprime_iff_dvd
exponent_eq_card πŸ“–mathematicalβ€”Monoid.exponent
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Nat.card
β€”dvd_antisymm
Nat.instIsCancelMulZero
Unique.instSubsingleton
Group.exponent_dvd_nat_card
Nat.factorization_prime_le_iff_dvd
LT.lt.ne'
Nat.card_pos
One.instNonempty
Monoid.exponent_ne_zero_of_finite
Nat.Prime.pow_dvd_iff_le_factorization
Sylow.card_eq_multiplicity
IsCyclic.exponent_eq_card
isZGroup
Monoid.exponent_dvd_of_monoidHom
Subgroup.subtype_injective
instIsCyclicOfFiniteOfIsNilpotent πŸ“–mathematicalβ€”IsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
β€”Nat.prime_of_mem_primeFactors
List.TFAE.out
isNilpotent_of_finite_tfae
MulEquiv.injective
map_mul
MonoidHomClass.toMulHomClass
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
instIsMulCommutativeSubtypeMemSubgroupOfIsCyclic
instIsCyclicSubtypeMemSubgroupOfFactPrime
mul_comm
IsCyclic.of_exponent_eq_card
exponent_eq_card
instIsCyclicSubtypeMemSubgroupOfFactPrime πŸ“–mathematicalβ€”IsCyclic
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Sylow.toSubgroup
Subgroup.zpow
β€”isZGroup
Fact.out
instIsSolvableOfFinite πŸ“–mathematicalβ€”IsSolvableβ€”isSolvable_iff_commutator_lt
Finite.to_wellFoundedLT
SetLike.instFinite
Subgroup.range_subtype
MonoidHom.range_eq_map
Subgroup.map_commutator
Subgroup.map_subtype_lt_map_subtype
commutator_lt
Subgroup.instFiniteSubtypeMem
instSubtypeMemSubgroup
Subgroup.nontrivial_iff_ne_bot
instOfIsCyclic πŸ“–mathematicalβ€”IsZGroupβ€”Subgroup.isCyclic
instQuotientSubgroupOfFinite πŸ“–mathematicalβ€”IsZGroup
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.Quotient.group
β€”of_surjective
QuotientGroup.mk'_surjective
instSubtypeMemSubgroup πŸ“–mathematicalβ€”IsZGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
β€”of_injective
Subgroup.subtype_injective
isCyclic_abelianization πŸ“–mathematicalβ€”IsCyclic
Abelianization
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Abelianization.commGroup
β€”instQuotientSubgroupOfFinite
instIsCyclicOfFiniteOfIsNilpotent
instFiniteAbelianization
CommGroup.isNilpotent
isCyclic_commutator πŸ“–mathematicalβ€”IsCyclic
Subgroup
SetLike.instMembership
Subgroup.instSetLike
commutator
Subgroup.zpow
β€”commutator_def
WellFoundedLT.induction
Finite.to_wellFoundedLT
SetLike.instFinite
eq_or_ne
Subgroup.commutator_bot_left
Bot.isCyclic
Subgroup.subtype_injective
isCyclic_of_surjective
IsSolvable.commutator_lt_of_ne_bot
instIsSolvableOfFinite
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Subgroup.map_subtype_commutator
Subgroup.map_commutator
MulEquiv.surjective
Subgroup.le_centralizer_iff
MulEquiv.injective
Abelianization.commutator_subset_ker
Subgroup.map_subgroupOf_eq_of_le
le_top
Subgroup.map_subtype_le_map_subtype
Subgroup.normalizer_eq_top
Subgroup.commutator_normal
Subgroup.normalizerMonoidHom_ker
instIsConcreteLE
MulMemClass.mul_mem
Subgroup.instSubgroupClass
isCyclic_abelianization
Subgroup.instFiniteSubtypeMem
instSubtypeMemSubgroup
Abelianization.ker_of
instIsCyclicOfFiniteOfIsNilpotent
CommGroup.isNilpotent
isZGroup πŸ“–mathematicalNat.PrimeIsCyclic
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Sylow.toSubgroup
Subgroup.zpow
β€”β€”
of_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
IsZGroupβ€”isZGroup_iff
Sylow.exists_comap_eq_of_injective
Subgroup.map_comap_le
isCyclic_of_surjective
Subgroup.isCyclic
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.surjective
of_squarefree πŸ“–mathematicalSquarefree
Nat.instMonoid
Nat.card
IsZGroupβ€”Nat.finite_of_card_ne_zero
Squarefree.ne_zero
Nat.instNontrivial
IsPGroup.exists_card_eq
Subgroup.instFiniteSubtypeMem
Sylow.isPGroup'
isCyclic_of_card_dvd_prime
Squarefree.pow_dvd_of_pow_dvd
Subgroup.card_subgroup_dvd_card
of_surjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
IsZGroupβ€”isZGroup_iff
Sylow.mapSurjective_surjective
isCyclic_of_surjective
MonoidHom.instMonoidHomClass
MonoidHom.subgroupMap_surjective

Sylow

Theorems

NameKindAssumesProvesValidatesDepends On
commutator_eq_bot_or_commutator_eq_self πŸ“–mathematicalSubgroup.IsComplement'
toSubgroup
Bracket.bracket
Subgroup
Subgroup.commutator
Bot.bot
Subgroup.instBot
β€”IsPGroup.commutator_eq_bot_or_commutator_eq_self
isPGroup'
le_top
Subgroup.normalizer_eq_top
card_coprime_index
Subgroup.IsComplement'.index_eq_card
le_center_or_le_commutator πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
toSubgroup
Subgroup.center
commutator
β€”Subgroup.exists_left_complement'_of_coprime
card_coprime_index
sup_le
Subgroup.commutator_eq_bot_iff_le_centralizer
Subgroup.le_centralizer
instIsMulCommutativeSubtypeMemSubgroupOfIsCyclic
Subgroup.centralizer_eq_top_iff_subset
top_le_iff
Subgroup.IsComplement'.sup_eq_top
commutator_def
Subgroup.commutator_mono
le_top
commutator_eq_bot_or_commutator_eq_self
normalizer_le_centralizer_or_le_commutator πŸ“–mathematicalβ€”Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
Subgroup.normalizer
toSubgroup
Subgroup.centralizer
SetLike.coe
Sylow
instSetLike
commutator
β€”Subgroup.le_normalizer
Subgroup.normal_in_normalizer
isCyclic_of_surjective
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.surjective
LE.le.trans
Subgroup.range_subtype
MonoidHom.range_eq_map
Subgroup.map_subtype_le_map_subtype
eq_top_iff
Subgroup.centralizer_eq_top_iff_subset
SetLike.coe_subset_coe
instIsConcreteLE
Subgroup.map_centralizer_le_centralizer_image
Subgroup.map_subgroupOf_eq_of_le
coe_subtype
Subgroup.coe_map
Subgroup.map_subtype_commutator
Subgroup.commutator_mono
le_top
le_center_or_le_commutator
Subgroup.instFiniteSubtypeMem
not_dvd_card_commutator_or_not_dvd_index_commutator πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
commutator
Subgroup.index
β€”not_dvd_index
SetLike.instFinite
Subgroup.finiteIndex_of_finite
Dvd.dvd.trans
Subgroup.IsComplement'.index_eq_card
MonoidHom.ker_transferSylow_isComplement'
Subgroup.card_dvd_of_le
Abelianization.commutator_subset_ker
instIsMulCommutativeSubtypeMemSubgroupOfIsCyclic
Subgroup.index_dvd_of_le
normalizer_le_centralizer_or_le_commutator

(root)

Definitions

NameCategoryTheorems
IsZGroup πŸ“–CompData
9 mathmath: IsZGroup.instOfIsCyclic, IsZGroup.instSubtypeMemSubgroup, isZGroup_iff_exists_mulEquiv, isZGroup_iff, isZGroup_of_coprime, IsZGroup.of_surjective, IsZGroup.instQuotientSubgroupOfFinite, IsZGroup.of_squarefree, IsZGroup.of_injective

Theorems

NameKindAssumesProvesValidatesDepends On
isZGroup_iff πŸ“–mathematicalβ€”IsZGroup
IsCyclic
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Sylow.toSubgroup
Subgroup.zpow
β€”β€”
isZGroup_iff_exists_mulEquiv πŸ“–mathematicalβ€”IsZGroup
IsCyclic
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpow
Nat.card
β€”Subgroup.exists_right_complement'_of_coprime
IsZGroup.coprime_commutator_index
Subgroup.IsComplement'.symm
le_top
Subgroup.normalizer_eq_top
isCyclic_of_surjective
IsZGroup.isCyclic_abelianization
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.surjective
IsZGroup.isCyclic_commutator
Nat.card_congr
isZGroup_of_coprime
Subgroup.instFiniteSubtypeMem
IsZGroup.instOfIsCyclic
Eq.ge
SemidirectProduct.range_inl_eq_ker_rightHom
IsZGroup.of_injective
MulEquiv.injective
isZGroup_of_coprime πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.range
Nat.card
IsZGroupβ€”Nat.Coprime.of_dvd
Dvd.dvd.trans
Subgroup.card_dvd_of_le
Subgroup.card_range_dvd
Subgroup.card_subgroup_dvd_card
Subgroup.index_ker
IsPGroup.le_or_disjoint_of_coprime
Sylow.isPGroup'
MonoidHom.normal_ker
LE.le.trans
MonoidHom.rangeRestrict_surjective
Sylow.mapSurjective_surjective
isCyclic_of_surjective
IsZGroup.instIsCyclicSubtypeMemSubgroupOfFactPrime
MonoidHom.instMonoidHomClass
MonoidHom.subgroupMap_surjective
Sylow.coe_subtype
Sylow.coe_mapSurjective
Sylow.ext_iff
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.surjective
IsPGroup.isCyclic_of_isZGroup
IsPGroup.map
isCyclic_of_injective
MonoidHom.ker_eq_bot_iff
Subgroup.ker_subgroupMap
Subgroup.subgroupOf_eq_bot

---

← Back to Index