Documentation

Mathlib.GroupTheory.SpecificGroups.ZGroup

Z-Groups #

A Z-group is a group whose Sylow subgroups are all cyclic.

Main definitions #

Main results #

class IsZGroup (G : Type u_1) [Group G] :

A Z-group is a group whose Sylow subgroups are all cyclic.

Instances
    theorem isZGroup_iff (G : Type u_1) [Group G] :
    IsZGroup G โ†” โˆ€ (p : โ„•), Nat.Prime p โ†’ โˆ€ (P : Sylow p G), IsCyclic โ†ฅโ†‘P
    theorem IsPGroup.isCyclic_of_isZGroup {G : Type u_1} [Group G] [IsZGroup G] {p : โ„•} [Fact (Nat.Prime p)] {P : Subgroup G} (hP : IsPGroup p โ†ฅP) :
    IsCyclic โ†ฅP
    theorem IsZGroup.of_injective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G โ†’* G'} [hG' : IsZGroup G'] (hf : Function.Injective โ‡‘f) :
    theorem IsZGroup.of_surjective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G โ†’* G'} [Finite G] [hG : IsZGroup G] (hf : Function.Surjective โ‡‘f) :

    A finite Z-group has cyclic abelianization.

    theorem IsZGroup.isCyclic_commutator (G : Type u_1) [Group G] [Finite G] [IsZGroup G] :
    IsCyclic โ†ฅ(commutator G)

    A finite Z-group has cyclic commutator subgroup.

    theorem IsPGroup.smul_mul_inv_trivial_or_surjective {G : Type u_1} [Group G] {p : โ„•} [Fact (Nat.Prime p)] [IsCyclic G] (hG : IsPGroup p G) {K : Type u_4} [Group K] [MulDistribMulAction K G] (hGK : (Nat.card G).Coprime (Nat.card K)) :
    (โˆ€ (g : G) (k : K), k โ€ข g * gโปยน = 1) โˆจ โˆ€ (g : G), โˆƒ (k : K) (q : G), k โ€ข q * qโปยน = g

    If a group K acts on a cyclic p-group G of coprime order, then the map K ร— G โ†’ G defined by (k, g) โ†ฆ k โ€ข g * gโปยน is either trivial or surjective.

    theorem IsPGroup.commutator_eq_bot_or_commutator_eq_self {G : Type u_1} [Group G] {p : โ„•} [Fact (Nat.Prime p)] {P K : Subgroup G} [IsCyclic โ†ฅP] (hP : IsPGroup p โ†ฅP) (hKP : K โ‰ค P.normalizer) (hPK : (Nat.card โ†ฅP).Coprime (Nat.card โ†ฅK)) :

    If a cyclic p-subgroup P acts by conjugation on a subgroup K of coprime order, then either โ…K, Pโ† = โŠฅ or โ…K, Pโ† = P.

    theorem Sylow.commutator_eq_bot_or_commutator_eq_self {G : Type u_1} [Group G] {p : โ„•} [Fact (Nat.Prime p)] [Finite G] (P : Sylow p G) [IsCyclic โ†ฅโ†‘P] [(โ†‘P).Normal] {K : Subgroup G} (h : K.IsComplement' โ†‘P) :
    โ…K, โ†‘Pโ† = โŠฅ โˆจ โ…K, โ†‘Pโ† = โ†‘P

    If a normal cyclic Sylow p-subgroup P has a complement K, then either โ…K, Pโ† = โŠฅ or โ…K, Pโ† = P.

    theorem Sylow.le_center_or_le_commutator {G : Type u_1} [Group G] {p : โ„•} [Fact (Nat.Prime p)] [Finite G] (P : Sylow p G) [IsCyclic โ†ฅโ†‘P] [(โ†‘P).Normal] :

    A normal cyclic Sylow subgroup is either central or contained in the commutator subgroup.

    theorem Sylow.normalizer_le_centralizer_or_le_commutator {G : Type u_1} [Group G] {p : โ„•} [Fact (Nat.Prime p)] [Finite G] (P : Sylow p G) [IsCyclic โ†ฅโ†‘P] :

    A cyclic Sylow subgroup is either central in its normalizer or contained in the commutator subgroup.

    If G has a cyclic Sylow p-subgroup, then the cardinality and index of the commutator subgroup of G cannot both be divisible by p.

    If G is a finite Z-group, then commutator G is a Hall subgroup of G.

    theorem isZGroup_of_coprime {G : Type u_1} {G' : Type u_2} {G'' : Type u_3} [Group G] [Group G'] [Group G''] {f : G โ†’* G'} {f' : G' โ†’* G''} [Finite G] [IsZGroup G] [IsZGroup G''] (h_le : f'.ker โ‰ค f.range) (h_cop : (Nat.card G).Coprime (Nat.card G'')) :

    An extension of coprime Z-groups is a Z-group.

    theorem isZGroup_iff_exists_mulEquiv {G : Type u_1} [Group G] [Finite G] :
    IsZGroup G โ†” โˆƒ (N : Subgroup G) (H : Subgroup G) (ฯ† : โ†ฅH โ†’* MulAut โ†ฅN) (x : G โ‰ƒ* โ†ฅN โ‹Š[ฯ†] โ†ฅH), IsCyclic โ†ฅH โˆง IsCyclic โ†ฅN โˆง (Nat.card โ†ฅN).Coprime (Nat.card โ†ฅH)

    A finite group G is a Z-group if and only if G is isomorphic to a semidirect product of two cyclic subgroups of coprime order.