Documentation Verification Report

FinTwo

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/GeneralLinearGroup/FinTwo.lean

Statistics

MetricCount
DefinitionsIsElliptic, IsHyperbolic, IsParabolic, fixpointPolynomial, upperRightHom, IsElliptic, IsHyperbolic, IsParabolic, parabolicEigenvalue
9
Theoremspow, fixpointPolynomial_eq_zero_iff, injective_upperRightHom, isParabolic_conj_iff, isParabolic_conj_iff', isParabolic_iff_of_upperTriangular, isParabolic_iff_of_upperTriangular_of_det, parabolicEigenvalue_ne_zero, upperRightHom_apply, sub_eigenvalue_sq_eq_zero, disc_conj, disc_conj', discr_conj, discr_conj', isElliptic_conj'_iff, isElliptic_conj_iff, isHyperbolic_conj'_iff, isHyperbolic_conj_iff, isParabolic_conj'_iff, isParabolic_conj_iff, isParabolic_iff_exists, isParabolic_iff_of_upperTriangular, sub_scalar_sq_eq_disc, sub_scalar_sq_eq_discr
24
Total33

Matrix

Definitions

NameCategoryTheorems
IsElliptic πŸ“–MathDef
2 mathmath: isElliptic_conj'_iff, isElliptic_conj_iff
IsHyperbolic πŸ“–MathDef
2 mathmath: isHyperbolic_conj_iff, isHyperbolic_conj'_iff
IsParabolic πŸ“–MathDef
4 mathmath: isParabolic_iff_of_upperTriangular, isParabolic_iff_exists, isParabolic_conj'_iff, isParabolic_conj_iff
parabolicEigenvalue πŸ“–CompOp
1 mathmath: IsParabolic.sub_eigenvalue_sq_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
disc_conj πŸ“–mathematicalβ€”discr
Fin.fintype
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
inv
β€”discr_conj
disc_conj' πŸ“–mathematicalβ€”discr
Fin.fintype
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
inv
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”discr_conj'
discr_conj πŸ“–mathematicalβ€”discr
Fin.fintype
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
inv
β€”Nat.instAtLeastTwoHAddOfNat
discr.congr_simp
discr_fin_two
trace_units_conj
det_units_conj
discr_conj' πŸ“–mathematicalβ€”discr
Fin.fintype
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
inv
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”discr.congr_simp
coe_units_inv
inv_inv_of_invertible
discr_conj
isElliptic_conj'_iff πŸ“–mathematicalβ€”IsElliptic
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
inv
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”coe_units_inv
inv_inv_of_invertible
isElliptic_conj_iff
isElliptic_conj_iff πŸ“–mathematicalβ€”IsElliptic
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
inv
β€”discr_conj
isHyperbolic_conj'_iff πŸ“–mathematicalβ€”IsHyperbolic
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
inv
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”coe_units_inv
inv_inv_of_invertible
isHyperbolic_conj_iff
isHyperbolic_conj_iff πŸ“–mathematicalβ€”IsHyperbolic
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
inv
β€”discr_conj
isParabolic_conj'_iff πŸ“–mathematicalβ€”IsParabolic
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
inv
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”coe_units_inv
inv_inv_of_invertible
isParabolic_conj_iff
isParabolic_conj_iff πŸ“–mathematicalβ€”IsParabolic
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
inv
β€”discr_conj
smul_eq_mul_diagonal
isParabolic_iff_exists πŸ“–mathematicalβ€”IsParabolic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Matrix
add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
nonAssocSemiring
Fin.fintype
RingHom.instFunLike
scalar
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Nat.instAtLeastTwoHAddOfNat
add_sub_cancel
sub_ne_zero
IsParabolic.sub_eigenvalue_sq_eq_zero
sub_eq_iff_eq_add'
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
MonoidWithZeroHomClass.toMonoidHomClass
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
sub_scalar_sq_eq_discr
trace_add
scalar_apply
trace_diagonal
Finset.sum_const
Fintype.card_fin
nsmul_eq_mul
IsNilpotent.eq_zero
isNilpotent_trace_of_isNilpotent
add_zero
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
add_sub_cancel_left
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Nat.instCharZero
div_eq_zero_iff
isParabolic_iff_of_upperTriangular πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsParabolicβ€”IsParabolic.eq_1
pow_eq_zero_iff
two_ne_zero
sub_eq_zero
diagonal_apply_ne
Fin.instNeZeroHAddNatOfNat_mathlib_1
ext
Fintype.complete
diagonal_apply_eq
sub_scalar_sq_eq_disc πŸ“–mathematicalβ€”Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fin.fintype
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
nonAssocSemiring
RingHom.instFunLike
scalar
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
trace
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
discr
β€”sub_scalar_sq_eq_discr
sub_scalar_sq_eq_discr πŸ“–mathematicalβ€”Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fin.fintype
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
nonAssocSemiring
RingHom.instFunLike
scalar
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
trace
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
discr
β€”Nat.instAtLeastTwoHAddOfNat
trace_fin_two
sq
discr_fin_two
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_mul
det_fin_two
ext
Fintype.complete
Finset.sum_congr
Fin.sum_univ_two
diagonal_apply_eq
diagonal_apply_ne
Fin.instNeZeroHAddNatOfNat_mathlib_1
sub_zero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero

Matrix.GeneralLinearGroup

Definitions

NameCategoryTheorems
IsElliptic πŸ“–MathDefβ€”
IsHyperbolic πŸ“–MathDefβ€”
IsParabolic πŸ“–MathDef
5 mathmath: Subgroup.HasDetPlusMinusOne.isParabolic_iff_of_upperTriangular, isParabolic_conj_iff, isParabolic_iff_of_upperTriangular, isParabolic_iff_of_upperTriangular_of_det, isParabolic_conj_iff'
fixpointPolynomial πŸ“–CompOp
2 mathmath: fixpointPolynomial_eq_zero_iff, fixpointPolynomial_aeval_eq_zero_iff
upperRightHom πŸ“–CompOp
6 mathmath: Subgroup.HasDetPlusMinusOne.isParabolic_iff_of_upperTriangular, upperRightHom_apply, isParabolic_iff_of_upperTriangular_of_det, continuous_upperRightHom, Subgroup.mem_strictPeriods_iff, injective_upperRightHom

Theorems

NameKindAssumesProvesValidatesDepends On
fixpointPolynomial_eq_zero_iff πŸ“–mathematicalβ€”fixpointPolynomial
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instZero
Matrix
Set
Set.instMembership
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Matrix.nonAssocSemiring
Fin.fintype
RingHom.instFunLike
Matrix.scalar
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
β€”fixpointPolynomial.eq_1
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Polynomial.coeff_sub
Polynomial.coeff_add
Polynomial.mul_coeff_zero
Polynomial.coeff_C_zero
Polynomial.coeff_X_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
Polynomial.coeff_X_zero
add_zero
zero_sub
Polynomial.coeff_C_mul
mul_one
Polynomial.coeff_mul_X
Polynomial.coeff_C_succ
sub_self
sub_zero
zero_add
Matrix.ext
Fintype.complete
Matrix.diagonal_apply_eq
Matrix.diagonal_apply_ne
Fin.instNeZeroHAddNatOfNat_mathlib_1
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
MulZeroClass.zero_mul
injective_upperRightHom πŸ“–mathematicalβ€”Matrix.GeneralLinearGroup
Fin.fintype
Ring.toSemiring
DFunLike.coe
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
AddChar.instFunLike
upperRightHom
β€”injective_iff_map_eq_zero
AddMonoidHom.instAddMonoidHomClass
Matrix.one_fin_two
EquivLike.toEmbeddingLike
isParabolic_conj_iff πŸ“–mathematicalβ€”IsParabolic
Matrix.GeneralLinearGroup
Fin.fintype
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instMul
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Units.instInv
β€”Matrix.coe_units_inv
isParabolic_conj_iff' πŸ“–mathematicalβ€”IsParabolic
Matrix.GeneralLinearGroup
Fin.fintype
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instMul
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Units.instInv
β€”Matrix.coe_units_inv
isParabolic_iff_of_upperTriangular πŸ“–mathematicalUnits.val
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fin.fintype
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsParabolicβ€”Matrix.isParabolic_iff_of_upperTriangular
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
isParabolic_iff_of_upperTriangular_of_det πŸ“–mathematicalDFunLike.coe
MonoidHom
Matrix.GeneralLinearGroup
Fin.fintype
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulOneClass.toMulOne
Units.instMulOneClass
Matrix
Matrix.semiring
MonoidHom.instFunLike
det
Units.instOne
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
IsParabolic
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Ring.toSemiring
Units.instMonoid
AddChar.instFunLike
upperRightHom
Matrix.nonUnitalNonAssocRing
β€”isParabolic_iff_of_upperTriangular
val_det_apply
Matrix.det_fin_two
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
LT.lt.ne'
LT.lt.trans_le
neg_one_lt_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
Matrix.eta_fin_two
Matrix.cons_val'
Matrix.cons_val_fin_one
Iff.not
neg_eq_zero
neg_neg
Matrix.neg_cons
Matrix.neg_empty
neg_zero
parabolicEigenvalue_ne_zero πŸ“–β€”IsParabolic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”Nat.instAtLeastTwoHAddOfNat
Matrix.discr_fin_two
Matrix.parabolicEigenvalue.eq_1
div_ne_zero_iff
eq_true_intro
two_ne_zero'
sq_eq_zero_iff
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
mul_eq_zero
det_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
upperRightHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Matrix.GeneralLinearGroup
Fin.fintype
Ring.toSemiring
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
AddChar.instFunLike
upperRightHom
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
AddMonoidWithOne.toOne
Matrix.vecEmpty
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”β€”

Matrix.GeneralLinearGroup.IsParabolic

Theorems

NameKindAssumesProvesValidatesDepends On
pow πŸ“–mathematicalMatrix.GeneralLinearGroup.IsParabolic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Matrix.GeneralLinearGroup
Fin.fintype
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
β€”eq_1
Matrix.isParabolic_iff_exists
CharZero.NeZero.two
Units.val_pow_eq_pow_val
Nat.le_induction
pow_one
Nat.cast_one
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
mul_one
one_smul
pow_succ
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
add_assoc
Matrix.smul_mul
IsScalarTower.right
smul_zero
add_zero
Nat.cast_add_one
one_mul
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.RingNF.mul_assoc_rev
Matrix.GeneralLinearGroup.det_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
zero_add
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
Matrix.det_zero
IsDomain.to_noZeroDivisors
instIsDomain
isReduced_of_noZeroDivisors
smul_pow
Algebra.to_smulCommClass

Matrix.IsParabolic

Theorems

NameKindAssumesProvesValidatesDepends On
sub_eigenvalue_sq_eq_zero πŸ“–mathematicalMatrix.IsParabolic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fin.fintype
Matrix.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Matrix.nonAssocSemiring
RingHom.instFunLike
Matrix.scalar
Matrix.parabolicEigenvalue
Matrix.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Nat.instAtLeastTwoHAddOfNat
Matrix.sub_scalar_sq_eq_discr
zero_div
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass

---

← Back to Index