Documentation

Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo

The group GL (Fin 2) R #

def Matrix.IsParabolic {R : Type u_1} [CommRing R] (m : Matrix (Fin 2) (Fin 2) R) :

A 2 Γ— 2 matrix is parabolic if it is non-scalar and its discriminant is 0.

Equations
    Instances For
      @[simp]
      theorem Matrix.discr_conj {R : Type u_1} [CommRing R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
      (↑g * m * (↑g)⁻¹).discr = m.discr
      @[simp]
      theorem Matrix.discr_conj' {R : Type u_1} [CommRing R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
      ((↑g)⁻¹ * m * ↑g).discr = m.discr
      @[deprecated Matrix.discr_conj (since := "2025-10-20")]
      theorem Matrix.disc_conj {R : Type u_1} [CommRing R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
      (↑g * m * (↑g)⁻¹).discr = m.discr

      Alias of Matrix.discr_conj.

      @[deprecated Matrix.discr_conj' (since := "2025-10-20")]
      theorem Matrix.disc_conj' {R : Type u_1} [CommRing R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
      ((↑g)⁻¹ * m * ↑g).discr = m.discr

      Alias of Matrix.discr_conj'.

      @[simp]
      theorem Matrix.isParabolic_conj_iff {R : Type u_1} [CommRing R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
      (↑g * m * (↑g)⁻¹).IsParabolic ↔ m.IsParabolic
      @[simp]
      theorem Matrix.isParabolic_conj'_iff {R : Type u_1} [CommRing R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
      ((↑g)⁻¹ * m * ↑g).IsParabolic ↔ m.IsParabolic
      theorem Matrix.isParabolic_iff_of_upperTriangular {R : Type u_1} [CommRing R] {m : Matrix (Fin 2) (Fin 2) R} [IsReduced R] (hm : m 1 0 = 0) :
      m.IsParabolic ↔ m 0 0 = m 1 1 ∧ m 0 1 β‰  0
      theorem Matrix.sub_scalar_sq_eq_discr {K : Type u_1} [Field K] {m : Matrix (Fin 2) (Fin 2) K} [NeZero 2] :
      (m - (scalar (Fin 2)) (m.trace / 2)) ^ 2 = (scalar (Fin 2)) (m.discr / 4)
      @[deprecated Matrix.sub_scalar_sq_eq_discr (since := "2025-10-20")]
      theorem Matrix.sub_scalar_sq_eq_disc {K : Type u_1} [Field K] {m : Matrix (Fin 2) (Fin 2) K} [NeZero 2] :
      (m - (scalar (Fin 2)) (m.trace / 2)) ^ 2 = (scalar (Fin 2)) (m.discr / 4)

      Alias of Matrix.sub_scalar_sq_eq_discr.

      def Matrix.parabolicEigenvalue {K : Type u_1} [Field K] (m : Matrix (Fin 2) (Fin 2) K) :
      K

      The unique eigenvalue of a parabolic matrix (junk if m is not parabolic).

      Equations
        Instances For
          theorem Matrix.isParabolic_iff_exists {K : Type u_1} [Field K] {m : Matrix (Fin 2) (Fin 2) K} [NeZero 2] :
          m.IsParabolic ↔ βˆƒ (a : K) (n : Matrix (Fin 2) (Fin 2) K), m = (scalar (Fin 2)) a + n ∧ n β‰  0 ∧ n ^ 2 = 0

          Characterization of parabolic elements: they have the form a + m where a is scalar and m is nonzero and nilpotent.

          def Matrix.IsHyperbolic {R : Type u_1} [CommRing R] [Preorder R] (m : Matrix (Fin 2) (Fin 2) R) :

          A 2 Γ— 2 matrix is hyperbolic if its discriminant is strictly positive.

          Equations
            Instances For
              def Matrix.IsElliptic {R : Type u_1} [CommRing R] [Preorder R] (m : Matrix (Fin 2) (Fin 2) R) :

              A 2 Γ— 2 matrix is elliptic if its discriminant is strictly negative.

              Equations
                Instances For
                  theorem Matrix.isHyperbolic_conj_iff {R : Type u_1} [CommRing R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
                  (↑g * m * (↑g)⁻¹).IsHyperbolic ↔ m.IsHyperbolic
                  theorem Matrix.isHyperbolic_conj'_iff {R : Type u_1} [CommRing R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
                  ((↑g)⁻¹ * m * ↑g).IsHyperbolic ↔ m.IsHyperbolic
                  theorem Matrix.isElliptic_conj_iff {R : Type u_1} [CommRing R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
                  (↑g * m * (↑g)⁻¹).IsElliptic ↔ m.IsElliptic
                  theorem Matrix.isElliptic_conj'_iff {R : Type u_1} [CommRing R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
                  ((↑g)⁻¹ * m * ↑g).IsElliptic ↔ m.IsElliptic

                  The map sending x to [1, x; 0, 1] (bundled as an AddChar).

                  Equations
                    Instances For
                      @[simp]
                      theorem Matrix.GeneralLinearGroup.upperRightHom_apply {R : Type u_1} [Ring R] (x : R) :
                      upperRightHom x = { val := !![1, x; 0, 1], inv := !![1, -x; 0, 1], val_inv := β‹―, inv_val := β‹― }
                      @[reducible, inline]
                      abbrev Matrix.GeneralLinearGroup.IsParabolic {R : Type u_1} [CommRing R] (g : GL (Fin 2) R) :

                      Synonym of Matrix.IsParabolic, for dot-notation.

                      Equations
                        Instances For
                          @[reducible, inline]
                          abbrev Matrix.GeneralLinearGroup.IsElliptic {R : Type u_1} [CommRing R] [Preorder R] (g : GL (Fin 2) R) :

                          Synonym of Matrix.IsElliptic, for dot-notation.

                          Equations
                            Instances For
                              @[reducible, inline]

                              Synonym of Matrix.IsHyperbolic, for dot-notation.

                              Equations
                                Instances For
                                  noncomputable def Matrix.GeneralLinearGroup.fixpointPolynomial {R : Type u_1} [CommRing R] (g : GL (Fin 2) R) :

                                  Polynomial whose roots are the fixed points of g considered as a MΓΆbius transformation.

                                  See Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff.

                                  Equations
                                    Instances For

                                      The fixed-point polynomial is identically zero iff g is scalar.

                                      theorem Matrix.GeneralLinearGroup.IsParabolic.pow {K : Type u_2} [Field K] {g : GL (Fin 2) K} (hg : g.IsParabolic) [CharZero K] {n : β„•} (hn : n β‰  0) :

                                      A non-zero power of a parabolic element is parabolic.

                                      theorem Matrix.GeneralLinearGroup.isParabolic_iff_of_upperTriangular {K : Type u_2} [Field K] {g : GL (Fin 2) K} (hg : ↑g 1 0 = 0) :
                                      g.IsParabolic ↔ ↑g 0 0 = ↑g 1 1 ∧ ↑g 0 1 β‰  0
                                      theorem Matrix.GeneralLinearGroup.isParabolic_iff_of_upperTriangular_of_det {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {g : GL (Fin 2) K} (h_det : det g = 1 ∨ det g = -1) (hg10 : ↑g 1 0 = 0) :
                                      g.IsParabolic ↔ (βˆƒ (x : K), x β‰  0 ∧ g = upperRightHom x) ∨ βˆƒ (x : K), x β‰  0 ∧ g = -upperRightHom x

                                      Specialized version of isParabolic_iff_of_upperTriangular intended for use with discrete subgroups of GL(2, ℝ).