The group GL (Fin 2) R #
A 2 Γ 2 matrix is parabolic if it is non-scalar and its discriminant is 0.
Equations
Instances For
@[deprecated Matrix.sub_scalar_sq_eq_discr (since := "2025-10-20")]
theorem
Matrix.sub_scalar_sq_eq_disc
{K : Type u_1}
[Field K]
{m : Matrix (Fin 2) (Fin 2) K}
[NeZero 2]
:
Alias of Matrix.sub_scalar_sq_eq_discr.
The unique eigenvalue of a parabolic matrix (junk if m is not parabolic).
Equations
Instances For
theorem
Matrix.IsParabolic.sub_eigenvalue_sq_eq_zero
{K : Type u_1}
[Field K]
{m : Matrix (Fin 2) (Fin 2) K}
[NeZero 2]
(hm : m.IsParabolic)
:
A 2 Γ 2 matrix is elliptic if its discriminant is strictly negative.
Equations
Instances For
@[simp]
@[simp]
theorem
Matrix.GeneralLinearGroup.isParabolic_conj_iff
{R : Type u_1}
[CommRing R]
(g h : GL (Fin 2) R)
:
@[simp]
theorem
Matrix.GeneralLinearGroup.isParabolic_conj_iff'
{R : Type u_1}
[CommRing R]
(g h : GL (Fin 2) R)
:
@[reducible, inline]
abbrev
Matrix.GeneralLinearGroup.IsElliptic
{R : Type u_1}
[CommRing R]
[Preorder R]
(g : GL (Fin 2) R)
:
Synonym of Matrix.IsElliptic, for dot-notation.
Equations
Instances For
@[reducible, inline]
abbrev
Matrix.GeneralLinearGroup.IsHyperbolic
{R : Type u_1}
[CommRing R]
[Preorder R]
(g : GL (Fin 2) R)
:
Synonym of Matrix.IsHyperbolic, for dot-notation.
Equations
Instances For
noncomputable def
Matrix.GeneralLinearGroup.fixpointPolynomial
{R : Type u_1}
[CommRing R]
(g : GL (Fin 2) R)
:
Polynomial whose roots are the fixed points of g considered as a MΓΆbius transformation.
See Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff.
Equations
Instances For
theorem
Matrix.GeneralLinearGroup.fixpointPolynomial_eq_zero_iff
{R : Type u_1}
[CommRing R]
{g : GL (Fin 2) R}
:
The fixed-point polynomial is identically zero iff g is scalar.
theorem
Matrix.GeneralLinearGroup.parabolicEigenvalue_ne_zero
{K : Type u_2}
[Field K]
{g : GL (Fin 2) K}
[NeZero 2]
(hg : g.IsParabolic)
:
theorem
Matrix.GeneralLinearGroup.IsParabolic.pow
{K : Type u_2}
[Field K]
{g : GL (Fin 2) K}
(hg : g.IsParabolic)
[CharZero K]
{n : β}
(hn : n β 0)
:
(g ^ n).IsParabolic
A non-zero power of a parabolic element is parabolic.
theorem
Matrix.GeneralLinearGroup.isParabolic_iff_of_upperTriangular_of_det
{K : Type u_2}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{g : GL (Fin 2) K}
(h_det : det g = 1 β¨ det g = -1)
(hg10 : βg 1 0 = 0)
:
g.IsParabolic β (β (x : K), x β 0 β§ g = upperRightHom x) β¨ β (x : K), x β 0 β§ g = -upperRightHom x
Specialized version of isParabolic_iff_of_upperTriangular intended for use with
discrete subgroups of GL(2, β).