Documentation Verification Report

CircleTransform

πŸ“ Source: Mathlib/MeasureTheory/Integral/CircleTransform.lean

Statistics

MetricCount
DefinitionscircleTransform, circleTransformBoundingFunction, circleTransformDeriv
3
TheoremscircleTransformDeriv_bound, circleTransformDeriv_eq, circleTransformDeriv_periodic, continuousOn_norm_circleTransformBoundingFunction, continuousOn_prod_circle_transform_function, continuous_circleTransform, continuous_circleTransformDeriv, integral_circleTransform, norm_circleTransformBoundingFunction_le
9
Total12

Complex

Definitions

NameCategoryTheorems
circleTransform πŸ“–CompOp
3 mathmath: circleTransformDeriv_eq, integral_circleTransform, continuous_circleTransform
circleTransformBoundingFunction πŸ“–CompOp
2 mathmath: norm_circleTransformBoundingFunction_le, continuousOn_norm_circleTransformBoundingFunction
circleTransformDeriv πŸ“–CompOp
4 mathmath: circleTransformDeriv_eq, continuous_circleTransformDeriv, circleTransformDeriv_periodic, circleTransformDeriv_bound

Theorems

NameKindAssumesProvesValidatesDepends On
circleTransformDeriv_bound πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex
Set
Set.instMembership
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.sphere
Set.instHasSubset
Real.instLE
Norm.norm
instNorm
circleTransformDeriv
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
β€”Metric.exists_lt_mem_ball_of_mem_ball
Metric.exists_ball_subset_ball
Nat.instAtLeastTwoHAddOfNat
norm_circleTransformBoundingFunction_le
LT.lt.le
Metric.pos_of_mem_ball
IsCompact.exists_isMaxOn
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
isCompact_sphere
instProperSpace
NormedSpace.sphere_nonempty
EMetric.instNontrivialTopologyOfNontrivial
instNontrivial
ContinuousOn.norm
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.ball_subset_ball
Function.Periodic.exists_mem_Icoβ‚€
Real.instArchimedean
circleTransformDeriv_periodic
Real.two_pi_pos
Set.Icc_subset_uIcc
Set.Ico_subset_Icc_self
Metric.ball_subset_closedBall
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
circleMap_mem_sphere
norm_nonneg
mul_assoc
mul_inv_rev
inv_I
neg_mul
deriv_circleMap
norm_neg
norm_mul
norm_I
norm_inv
norm_real
norm_ofNat
norm_circleMap_zero
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
one_mul
mul_one
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
IsOrderedAddMonoid.toAddLeftMono
Real.instNontrivial
circleTransformDeriv_eq πŸ“–mathematicalβ€”circleTransformDeriv
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
instNormedField
instInv
instSub
circleMap
circleTransform
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
mul_one
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.add_neg
inv_pow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
circleTransformDeriv_periodic πŸ“–mathematicalβ€”Function.Periodic
Real
Real.instAdd
circleTransformDeriv
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
periodic_circleMap
deriv_circleMap
continuousOn_norm_circleTransformBoundingFunction πŸ“–mathematicalReal
Real.instLT
ContinuousOn
Complex
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.pseudoMetricSpace
Norm.norm
instNorm
circleTransformBoundingFunction
SProd.sprod
Set
Set.instSProd
Metric.closedBall
Set.univ
β€”ContinuousOn.smul
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousOn_const
deriv_circleMap
ContinuousOn.mul
IsTopologicalSemiring.toContinuousMul
Continuous.comp_continuousOn
continuous_circleMap
continuousOn_snd
inv_pow
continuousOn_prod_circle_transform_function
ContinuousOn.norm
continuousOn_prod_circle_transform_function πŸ“–mathematicalReal
Real.instLT
ContinuousOn
Complex
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.pseudoMetricSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instInv
instSub
circleMap
SProd.sprod
Set
Set.instSProd
Metric.closedBall
Set.univ
β€”ContinuousOn.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousOn.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
continuousOn_const
ContinuousOn.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.comp_continuousOn
continuous_circleMap
continuousOn_snd
continuousOn_fst
Metric.closedBall_subset_ball
sub_ne_zero
circleMap_ne_mem_ball
continuous_circleTransform πŸ“–mathematicalReal
Real.instLT
Real.instZero
ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.sphere
Set
Set.instMembership
Metric.ball
Continuous
Real.pseudoMetricSpace
circleTransform
β€”Continuous.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuous_const
deriv_circleMap
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
continuous_circleMap
continuous_circleMap_inv
ContinuousOn.comp_continuous
circleMap_mem_sphere
LT.lt.le
continuous_circleTransformDeriv πŸ“–mathematicalReal
Real.instLT
Real.instZero
ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.sphere
Set
Set.instMembership
Metric.ball
Continuous
Real.pseudoMetricSpace
circleTransformDeriv
β€”circleTransformDeriv_eq
Continuous.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuous_circleMap_inv
continuous_circleTransform
integral_circleTransform πŸ“–mathematicalβ€”intervalIntegral
NormedSpace.complexToReal
NormedAddCommGroup.toSeminormedAddCommGroup
circleTransform
Real
Real.instZero
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
instNormedField
instInv
instMul
instNatCast
ofReal
I
circleIntegral
instSub
β€”Nat.instAtLeastTwoHAddOfNat
deriv_circleMap
mul_inv_rev
inv_I
neg_mul
zero_add
neg_smul
intervalIntegral.integral_neg
intervalIntegral.integral_smul
NormedSpace.toNormSMulClass
SMulCommClass.complexToReal
smulCommClass_self
norm_circleTransformBoundingFunction_le πŸ“–mathematicalReal
Real.instLT
Real.instLE
Real.instZero
Norm.norm
Complex
instNorm
circleTransformBoundingFunction
Set
Set.instMembership
SProd.sprod
Set.instSProd
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Set.uIcc
Real.lattice
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”continuousOn_norm_circleTransformBoundingFunction
Nat.instAtLeastTwoHAddOfNat
IsCompact.prod
ProperSpace.isCompact_closedBall
instProperSpace
isCompact_uIcc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Set.Nonempty.prod
Metric.nonempty_closedBall
Set.nonempty_uIcc
IsCompact.exists_isMaxOn
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ContinuousOn.mono
Set.prod_mono_right
Set.subset_univ

---

← Back to Index