Documentation

Mathlib.MeasureTheory.Integral.CircleTransform

Circle integral transform #

In this file we define the circle integral transform of a function f with complex domain. This is defined as $(2ฯ€i)^{-1}\frac{f(x)}{x-w}$ where x moves along a circle. We then prove some basic facts about these functions.

These results are useful for proving that the uniform limit of a sequence of holomorphic functions is holomorphic.

def Complex.circleTransform {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (R : โ„) (z w : โ„‚) (f : โ„‚ โ†’ E) (ฮธ : โ„) :
E

Given a function f : โ„‚ โ†’ E, circleTransform R z w f is the function mapping ฮธ to (2 * โ†‘ฯ€ * I)โปยน โ€ข deriv (circleMap z R) ฮธ โ€ข ((circleMap z R ฮธ) - w)โปยน โ€ข f (circleMap z R ฮธ).

If f is differentiable and w is in the interior of the ball, then the integral from 0 to 2 * ฯ€ of this gives the value f(w).

Equations
    Instances For
      def Complex.circleTransformDeriv {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (R : โ„) (z w : โ„‚) (f : โ„‚ โ†’ E) (ฮธ : โ„) :
      E

      The derivative of circleTransform w.r.t. w.

      Equations
        Instances For
          theorem Complex.circleTransformDeriv_eq {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (R : โ„) (z w : โ„‚) (f : โ„‚ โ†’ E) :
          circleTransformDeriv R z w f = fun (ฮธ : โ„) => (circleMap z R ฮธ - w)โปยน โ€ข circleTransform R z w f ฮธ

          A useful bound for circle integrals (with complex codomain)

          Equations
            Instances For
              theorem Complex.circleTransformDeriv_bound {R : โ„} (hR : 0 < R) {z x : โ„‚} {f : โ„‚ โ†’ โ„‚} (hx : x โˆˆ Metric.ball z R) (hf : ContinuousOn f (Metric.sphere z R)) :
              โˆƒ (B : โ„) (ฮต : โ„), 0 < ฮต โˆง Metric.ball x ฮต โІ Metric.ball z R โˆง โˆ€ (t : โ„), โˆ€ y โˆˆ Metric.ball x ฮต, โ€–circleTransformDeriv R z y f tโ€– โ‰ค B

              The derivative of a circleTransform is locally bounded.