Documentation Verification Report

Constructions

πŸ“ Source: Mathlib/MeasureTheory/MeasurableSpace/Constructions.lean

Statistics

MetricCount
DefinitionsMeasurableEq, pi, prod, instMeasurableSpace, instMeasurableSpace, instMeasurableSpace, measurableSpace, measurableSpace, instMeasurableSpace, instMeasurableSpace, instMeasurableSpace, instMeasurableSpace, instMeasurableSpace, instMeasurableSpace, measurableAtom
15
Theoremsmeasurable_iff, measurable_restrict, measurable_restrict_apply, measurable_restrictβ‚‚, measurable_restrictβ‚‚_apply, and, const_eq, dite, eq, eq_const, eq_mp, eval, exists, find, forall, fst, iff, imp, not, of_uncurry_left, of_uncurry_right, or, prod, prodMap, prodMk, rangeFactorization, setOf, snd, subset, subtype_coe, subtype_map, subtype_mk, subtype_val, sumElim, sumMap, measurableSet_diagonal, disjointed, image_inclusion, image_inclusion', inl_image, inr_image, measurableAtom_of_countable, mem, of_subtype_image, of_union_cover, pi, prod, sep_finite, sep_infinite, setOf_finite, setOf_infinite, subtype_image, tProd, univ_pi, comap_le_comap_pi, instMeasurableSingletonClass, instMeasurableSingletonClass, instDiscreteMeasurableSpace, instDiscreteMeasurableSpace, measurable_coe, measurable_from_quotient, instDiscreteMeasurableSpace, measurable_coe, measurable_from_quotient, instMeasurableSingletonClass, measurable_restrict, measurable_restrict_apply, measurable_restrictβ‚‚, measurable_restrictβ‚‚_apply, instMeasurableSingletonClass, disjoint_measurableAtom_of_notMem, exists_measurable_piecewise, instMeasurableEqOfMeasurableSingletonClassOfCountable, instMeasurableSingletonClassOfMeasurableEq, measurableAtom_eq_of_mem, measurableAtom_of_measurableSingletonClass, measurableAtom_subset, measurableAtom_subset_of_mem, measurableSet_eq_fun, measurableSet_inl_image, measurableSet_inr_image, measurableSet_mem, measurableSet_notMem, measurableSet_pi, measurableSet_pi_of_nonempty, measurableSet_preimage_down, measurableSet_preimage_up, measurableSet_prod, measurableSet_prod_of_nonempty, measurableSet_quotient, measurableSet_range_inl, measurableSet_range_inr, measurableSet_setOf, measurableSet_sum_iff, measurableSet_swap_iff, measurable_compl, measurable_curry, measurable_down, measurable_eq_mp, measurable_equivCurry, measurable_equivCurry_symm, measurable_find, measurable_findGreatest, measurable_findGreatest', measurable_from_nat, measurable_from_prod_countable', measurable_from_prod_countable_left, measurable_from_prod_countable_left', measurable_from_prod_countable_right, measurable_from_prod_countable_right', measurable_from_quotient, measurable_fst, measurable_fun_prod, measurable_fun_sum, measurable_iUnionLift, measurable_inclusion, measurable_inl, measurable_inr, measurable_liftCover, measurable_mem, measurable_of_measurable_on_compl_finite, measurable_of_measurable_on_compl_singleton, measurable_of_measurable_union_cover, measurable_of_restrict_of_restrict_compl, measurable_piCongrLeft, measurable_piCurry, measurable_piCurry_symm, measurable_piEquivPiSubtypeProd, measurable_piEquivPiSubtypeProd_symm, measurable_pi_apply, measurable_pi_iff, measurable_pi_lambda, measurable_prodMk_left, measurable_prodMk_right, measurable_quot_mk, measurable_quotient_mk', measurable_quotient_mk'', measurable_setOf, measurable_set_iff, measurable_set_mem, measurable_set_notMem, measurable_sigmaCurry, measurable_sigmaUncurry, measurable_snd, measurable_subtype_coe, measurable_swap, measurable_swap_iff, measurable_tProd_elim, measurable_tProd_elim', measurable_tProd_mk, measurable_to_bool, measurable_to_countable, measurable_to_countable', measurable_to_nat, measurable_to_prop, measurable_uncurry, measurable_uniqueElim, measurable_unit, measurable_up, measurable_update, measurable_update', measurable_updateFinset, measurable_updateFinset', measurable_updateFinset_left, measurable_update_left, mem_measurableAtom_self, mem_of_mem_measurableAtom
167
Total182

ENat

Theorems

NameKindAssumesProvesValidatesDepends On
measurable_iff πŸ“–mathematicalβ€”Measurable
ENat
instMeasurableSpace
MeasurableSet
Set.preimage
Set
Set.instSingletonSet
instNatCast
β€”MeasurableSingletonClass.measurableSet_singleton
instMeasurableSingletonClass
measurable_to_countable'
instCountable
WithTop.none_eq_top
Set.compl_range_some
Set.preimage_compl
Set.iUnion_singleton_eq_range
Set.preimage_iUnion
MeasurableSet.compl
MeasurableSet.iUnion
instCountableNat

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
measurable_restrict πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Finset
SetLike.instMembership
instSetLike
restrict
β€”measurable_pi_lambda
measurable_pi_apply
measurable_restrict_apply πŸ“–mathematicalMeasurableFinset
SetLike.instMembership
instSetLike
Subtype.instMeasurableSpace
restrict
β€”Measurable.comp
measurable_subtype_coe
measurable_restrictβ‚‚ πŸ“–mathematicalFinset
instHasSubset
Measurable
MeasurableSpace.pi
SetLike.instMembership
instSetLike
restrictβ‚‚
β€”measurable_pi_lambda
measurable_pi_apply
measurable_restrictβ‚‚_apply πŸ“–mathematicalFinset
instHasSubset
Measurable
SetLike.instMembership
instSetLike
Subtype.instMeasurableSpace
restrictβ‚‚β€”Measurable.comp
measurable_inclusion

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
and πŸ“–β€”Measurable
Prop.instMeasurableSpace
β€”β€”measurableSet_setOf
MeasurableSet.inter
setOf
const_eq πŸ“–mathematicalMeasurableProp.instMeasurableSpaceβ€”eq_const
dite πŸ“–β€”Measurable
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Compl.compl
Set.instCompl
MeasurableSet
β€”β€”measurable_of_restrict_of_restrict_compl
Set.restrict_dite
Subtype.coe_eta
Set.restrict_dite_compl
eq πŸ“–mathematicalMeasurableProp.instMeasurableSpaceβ€”measurableSet_setOf
measurableSet_eq_fun
eq_const πŸ“–mathematicalMeasurableProp.instMeasurableSpaceβ€”measurableSet_setOf
MeasurableSet.preimage
measurableSet_eq
eq_mp πŸ“–β€”Measurableβ€”β€”comp
measurable_eq_mp
eval πŸ“–β€”Measurable
MeasurableSpace.pi
β€”β€”comp
measurable_pi_apply
exists πŸ“–β€”Measurable
Prop.instMeasurableSpace
β€”β€”measurableSet_setOf
Set.setOf_exists
MeasurableSet.iUnion
setOf
find πŸ“–mathematicalMeasurable
MeasurableSet
setOf
Nat.findβ€”measurable_from_prod_countable_left
instCountableNat
Nat.instMeasurableSingletonClass
comp
prodMk
measurable_id
measurable_find
forall πŸ“–β€”Measurable
Prop.instMeasurableSpace
β€”β€”measurableSet_setOf
Set.setOf_forall
MeasurableSet.iInter
setOf
fst πŸ“–β€”Measurable
Prod.instMeasurableSpace
β€”β€”comp
measurable_fst
iff πŸ“–β€”Measurable
Prop.instMeasurableSpace
β€”β€”measurableSet_setOf
MeasurableSet.bihimp
setOf
imp πŸ“–β€”Measurable
Prop.instMeasurableSpace
β€”β€”measurableSet_setOf
MeasurableSet.himp
setOf
not πŸ“–β€”Measurable
Prop.instMeasurableSpace
β€”β€”measurableSet_setOf
MeasurableSet.compl
setOf
of_uncurry_left πŸ“–β€”Measurable
Prod.instMeasurableSpace
β€”β€”comp
measurable_prodMk_left
of_uncurry_right πŸ“–β€”Measurable
Prod.instMeasurableSpace
β€”β€”comp
measurable_prodMk_right
or πŸ“–β€”Measurable
Prop.instMeasurableSpace
β€”β€”measurableSet_setOf
MeasurableSet.union
setOf
prod πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”of_le_map
sup_le
MeasurableSpace.comap_le_iff_le_map
MeasurableSpace.map_comp
prodMap πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”prodMk
comp
measurable_fst
measurable_snd
prodMk πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”prod
rangeFactorization πŸ“–mathematicalMeasurableSet.Elem
Set.range
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.rangeFactorization
β€”Set.mem_range_self
setOf πŸ“–mathematicalMeasurable
Prop.instMeasurableSpace
MeasurableSet
setOf
β€”measurableSet_setOf
snd πŸ“–β€”Measurable
Prod.instMeasurableSpace
β€”β€”comp
measurable_snd
subset πŸ“–mathematicalMeasurable
Set
Set.instMeasurableSpace
Prop.instMeasurableSpace
Set.instHasSubset
β€”forall
imp
fun_comp
measurable_set_mem
subtype_coe πŸ“–β€”Measurable
Subtype.instMeasurableSpace
β€”β€”comp
measurable_subtype_coe
subtype_map πŸ“–mathematicalMeasurableSubtype.instMeasurableSpace
Subtype.map
β€”comp
measurable_subtype_coe
subtype_mk πŸ“–mathematicalMeasurableSubtype.instMeasurableSpaceβ€”β€”
subtype_val πŸ“–β€”Measurable
Subtype.instMeasurableSpace
β€”β€”subtype_coe
sumElim πŸ“–mathematicalMeasurableSum.instMeasurableSpaceβ€”measurable_fun_sum
sumMap πŸ“–mathematicalMeasurableSum.instMeasurableSpaceβ€”sumElim
comp
measurable_inl
measurable_inr

MeasurableEq

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet_diagonal πŸ“–mathematicalβ€”MeasurableSet
Prod.instMeasurableSpace
Set.diagonal
β€”β€”

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
disjointed πŸ“–mathematicalMeasurableSetdisjointed
Set
BooleanAlgebra.toGeneralizedBooleanAlgebra
Set.instBooleanAlgebra
Nat.instPreorder
LocallyFiniteOrder.toLocallyFiniteOrderBot
Nat.instOrderBot
Nat.instLocallyFiniteOrder
β€”disjointedRec
diff
image_inclusion πŸ“–mathematicalSet
Set.instHasSubset
MeasurableSet
Set.Elem
Subtype.instMeasurableSpace
Set.instMembership
Set.image
Set.inclusion
β€”image_inclusion'
measurable_subtype_coe
image_inclusion' πŸ“–mathematicalSet
Set.instHasSubset
MeasurableSet
Set.Elem
Subtype.instMeasurableSpace
Set.instMembership
Set.preimage
Set.image
Set.inclusion
β€”Set.ext
inter
measurable_subtype_coe
inl_image πŸ“–mathematicalMeasurableSetSum.instMeasurableSpace
Set.image
β€”measurableSet_inl_image
inr_image πŸ“–mathematicalMeasurableSetSum.instMeasurableSpace
Set.image
β€”measurableSet_inr_image
measurableAtom_of_countable πŸ“–mathematicalβ€”MeasurableSet
measurableAtom
β€”Set.Subset.antisymm
Set.iInter_congr_Prop
mem_of_mem_measurableAtom
Set.compl_subset_compl
Set.compl_iInter
biInter
Set.to_countable
SetCoe.countable
Function.sometimes_spec
mem πŸ“–mathematicalMeasurableSetMeasurable
Prop.instMeasurableSpace
Set
Set.instMembership
β€”measurable_mem
of_subtype_image πŸ“–mathematicalMeasurableSet
Set.image
Set
Set.instMembership
Set.Elem
Subtype.instMeasurableSpace
β€”Set.preimage_image_eq
Subtype.val_injective
of_union_cover πŸ“–β€”MeasurableSet
Set
Set.instHasSubset
Set.univ
Set.instUnion
Set.instMembership
Subtype.instMeasurableSpace
Set.preimage
β€”β€”Set.image_preimage_eq_inter_range
Subtype.range_coe_subtype
Set.univ_subset_iff
Set.inter_univ
union
subtype_image
pi πŸ“–mathematicalMeasurableSetMeasurableSpace.pi
Set.pi
β€”Set.pi_def
biInter
measurable_pi_apply
prod πŸ“–mathematicalMeasurableSetProd.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
β€”inter
measurable_fst
measurable_snd
sep_finite πŸ“–mathematicalMeasurableSet
Set
Set.instMeasurableSpace
setOf
Set.instMembership
Set.Finite
β€”inter
setOf_finite
sep_infinite πŸ“–mathematicalMeasurableSet
Set
Set.instMeasurableSpace
setOf
Set.instMembership
Set.Infinite
β€”inter
setOf_infinite
setOf_finite πŸ“–mathematicalβ€”MeasurableSet
Set
Set.instMeasurableSpace
setOf
Set.Finite
β€”Set.Countable.measurableSet
Set.instMeasurableSingletonClass
Set.Countable.setOf_finite
setOf_infinite πŸ“–mathematicalβ€”MeasurableSet
Set
Set.instMeasurableSpace
setOf
Set.Infinite
β€”compl
setOf_finite
subtype_image πŸ“–mathematicalMeasurableSet
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.imageβ€”Subtype.image_preimage_coe
inter
tProd πŸ“–mathematicalMeasurableSetList.TProd
TProd.instMeasurableSpace
Set.tprod
β€”univ
prod
univ_pi πŸ“–mathematicalMeasurableSetMeasurableSpace.pi
Set.pi
Set.univ
β€”pi
Set.to_countable
SetCoe.countable

MeasurableSpace

Definitions

NameCategoryTheorems
pi πŸ“–CompOp
385 math, 2 bridgemath: indepFun_process_of_bcf, MeasureTheory.volume_preserving_arrowCongr', MeasureTheory.Measure.univ_pi_Ioc_ae_eq_Icc, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, MeasurableEquiv.piCurry_apply, measurable_sigmaUncurry, Preorder.measurable_restrictLe, BoxIntegral.Prepartition.measure_iUnion_toReal, MeasureTheory.volume_preserving_pi, MeasureTheory.Integrable.fin_nat_prod, NumberField.mixedEmbedding.measurable_polarCoordReal_symm, MeasureTheory.lmarginal_univ, aemeasurable_pi_lambda, measurableSet_pi_of_nonempty, MeasureTheory.measurePreserving_funUnique, ProbabilityTheory.Kernel.partialTraj_succ_of_le, ZLattice.covolume_eq_det_inv, MeasureTheory.Measure.pi_Ioc_ae_eq_pi_Icc, MeasureTheory.measurable_restrict_cylinderEvents, pi_indepFun_pi_of_prod_bcf, BoxIntegral.Box.measurableSet_Icc, indicator_indepFun_pi_of_prod_bcf, MeasureTheory.Measure.pi'_pi, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, Pi.instMeasurableConstSMul, measurable_update', MeasureTheory.integral_fintype_prod_eq_prod, MeasureTheory.volume_measurePreserving_piCongrLeft, MeasureTheory.Measure.ae_le_set_pi, ProbabilityTheory.iIndepFun_infinitePi, measurable_pi_iff, MeasureTheory.Measure.pi_map_piCongrLeft, MeasureTheory.Measure.pi.isInvInvariant, MeasurableEquiv.finTwoArrow_apply, MeasureTheory.Measure.pi_of_empty, MeasureTheory.Measure.pi_eval_preimage_null, MeasureTheory.Measure.pi.sigmaFinite, MeasureTheory.measurable_uniqueElim_cylinderEvents, MeasureTheory.isProjectiveLimit_nat_iff, MeasureTheory.measurePreserving_pi, measurable_pi_lambda, Real.smul_map_diagonal_volume_pi, BoxIntegral.Box.measurableSet_coe, Finset.measurable_restrict, MeasureTheory.ProbabilityMeasure.continuous_pi, MeasurableEquiv.piFinTwo_symm_apply, OrthonormalBasis.measurePreserving_repr, MeasureTheory.volume_preserving_piFinsetUnion, measurable_uncurry, Finset.measurable_restrictβ‚‚, Pi.measurableAdd, MeasureTheory.Measure.pi_hyperplane, MeasureTheory.Measure.univ_pi_Ioo_ae_eq_Icc, generateFrom_eq_pi, Complex.measurableEquivPi_apply, ProbabilityTheory.IsGaussianProcess.hasGaussianLaw, MeasureTheory.integral_fintype_prod_eq_pow, Set.OrdConnected.nullMeasurableSet, MeasureTheory.Measure.pi_noAtoms, MeasureTheory.measurePreserving_finTwoArrow_vec, ProbabilityTheory.IsRatCondKernelCDFAux.measurable, MeasureTheory.integrable_comp_eval, aemeasurable_pi_iff, MeasureTheory.charFunDual_pi', MeasureTheory.measurable_cylinderEvents_lambda, ProbabilityTheory.covarianceBilin_apply_basisFun_self, measurable_tProd_elim', GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, MeasurableEquiv.funUnique_symm_apply, MeasurableEquiv.coe_sumPiEquivProdPi, MeasureTheory.Measure.pi_pi_aux, EuclideanSpace.volume_closedBall_fin_three, MeasureTheory.lintegral_eq_lmarginal_univ, MeasurableEquiv.piEquivPiSubtypeProd_apply, MeasureTheory.Measure.infinitePi_map_piCongrLeft, MeasureTheory.hausdorffMeasure_measurePreserving_piFinTwo, MeasureTheory.Measure.infinitePi_map_piCurry, MeasurableSet.of_mem_measurableCylinders, Real.map_matrix_volume_pi_eq_smul_volume_pi, MeasureTheory.IsProjectiveMeasureFamily.measure_univ_eq_of_subset, MeasureTheory.Measure.infinitePi_pi, MeasurableEquiv.coe_IicProdIoc_symm, generateFrom_pi_eq, PiLp.volume_preserving_toLp, Pi.measurableSubβ‚‚, ProbabilityTheory.iIndepFun_pi, BoxIntegral.Box.measure_coe_lt_top, MeasureTheory.Measure.map_piSingleton, ProbabilityTheory.setBernoulli_apply', NumberField.mixedEmbedding.fundamentalDomain_idealLattice, BoxIntegral.Box.measure_Icc_lt_top, ZLattice.covolume_div_covolume_eq_relIndex, MeasureTheory.FiniteMeasure.pi_pi, MeasureTheory.ProbabilityMeasure.pi_pi, MeasureTheory.integral_comp_eval, MeasureTheory.Measure.pi_prod_map_IocProdIoc, MeasureTheory.hausdorffMeasure_pi_real, MeasureTheory.volume_preserving_piFinSuccAbove, EuclideanSpace.volume_closedBall_fin_two, MeasureTheory.Measure.pi.isLocallyFiniteMeasure, MeasureTheory.measurePreserving_eval, MeasureTheory.Measure.pi_ball, MeasureTheory.measurePreserving_piCongrLeft, MeasureTheory.IsProjectiveLimit.measure_univ_eq, measurable_sigmaCurry, Pi.opensMeasurableSpace, measurableSet_pi_polarCoord_target, MeasureTheory.measurePreserving_arrowCongr', MeasureTheory.Measure.pi.isHaarMeasure, MeasureTheory.measurePreserving_arrowProdEquivProdArrow, MeasureTheory.Measure.pi_map_eval, ProbabilityTheory.Kernel.partialTraj_succ_eq_comp, Preorder.measurable_frestrictLeβ‚‚, measurable_pi_apply, ProbabilityTheory.Kernel.partialTraj_le_def, MeasureTheory.Measure.restrict_pi_pi, MeasureTheory.charFun_pi, MeasureTheory.Measure.pi_Ico_ae_eq_pi_Icc, MeasureTheory.volume_preserving_pi_empty, MeasureTheory.Measure.pi.isAddRightInvariant, MeasureTheory.IsProjectiveMeasureFamily.eq_zero_of_isEmpty, MeasureTheory.Measure.pi_singleton, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, MeasureTheory.Integrable.fintype_prod_dep, ProbabilityTheory.iCondIndepFun.condIndepFun_finset, Pi.measurableDiv, NumberField.mixedEmbedding.covolume_idealLattice, indep_comap_pi_of_bcf, NumberField.mixedEmbedding.volume_preserving_negAt, measurable_update_left, MeasureTheory.Measure.infinitePiNat_map_piCongrLeft, MeasureTheory.measurePreserving_piFinTwo, MeasurableEquiv.curry_symm_apply, MeasureTheory.Measure.pi_prod_map_IicProdIoc, MeasureTheory.measurableCylinders_nat, Preorder.measurable_restrictLeβ‚‚, MeasureTheory.Measure.pi_univ, MeasureTheory.Measure.pi_Ioi_ae_eq_pi_Ici, Pi.measurableInv, MeasureTheory.Measure.pi_caratheodory, MeasureTheory.ProbabilityMeasure.toMeasure_pi, NumberField.Units.regOfFamily_of_isMaxRank, ProbabilityTheory.Kernel.instIsSFiniteKernelForallValNatMemFinsetIicPartialTraj, PiLp.volume_preserving_ofLp, StandardBorelSpace.pi_countable, MeasureTheory.Measure.pi_map_pi, measurable_setOf, MeasureTheory.Measure.univ_pi_Ico_ae_eq_Icc, process_indepFun_process_of_bcf, MeasureTheory.partialTraj_const, ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_increments, indicator_indepFun_pi_of_bcf, MeasureTheory.Measure.pi_Ioo_ae_eq_pi_Icc, ProbabilityTheory.Kernel.partialTraj_le, MeasurableEquiv.curry_apply, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, MeasureTheory.Measure.univ_pi_Ioi_ae_eq_Ici, BoxIntegral.norm_integral_le_of_le_const, MeasureTheory.Measure.infinitePi_singleton_of_fintype, indicator_indepFun_process_of_bcf, ProbabilityTheory.Kernel.partialTraj_succ_self, MeasureTheory.Measure.volume_pi_eq_dirac, indepFun_pi_of_bcf, measurable_updateFinset, Set.measurable_restrictβ‚‚, ProbabilityTheory.measurable_preCDF', MeasureTheory.Measure.pi.isMulRightInvariant, measurable_IicProdIoc, MeasureTheory.measurePreserving_piFinSuccAbove, MeasureTheory.Measure.infinitePi_map_eval, measurable_tProd_mk, ProbabilityTheory.condCDF_eq_stieltjesOfMeasurableRat_unit_prod, MeasurableEquiv.piUnique_symm_apply, Pi.measurableMulβ‚‚, MeasurableEquiv.piUnique_apply, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, MeasurableEquiv.piCongrLeft_apply_apply, PiLp.borelSpace, process_indepFun_process_of_prod_bcf, MeasurableEquiv.coe_IicProdIoc, NumberField.mixedEmbedding.measurableSet_fundamentalCone, ProbabilityTheory.isProjectiveMeasureFamily_map_restrict, measurePreserving_eval_infinitePi, pi_indepFun_pi_of_bcf, indep_comap_process_of_bcf, measurable_updateFinset_left, process_indepFun_of_prod_bcf, Pi.borelSpace, MeasureTheory.Measure.infinitePi_dirac, ProbabilityTheory.iIndepFun_iff_charFunDual_pi, MeasurableEquiv.coe_piCongrLeft, MeasurableEquiv.funUnique_apply, ProbabilityTheory.covarianceBilin_apply_pi, MeasureTheory.measurePreserving_piUnique, NumberField.mixedEmbedding.covolume_integerLattice, MeasureTheory.Measure.pi.isMulLeftInvariant, MeasureTheory.Measure.infinitePi_map_curry_symm, MeasureTheory.Measure.pi_Ioo_ae_eq_pi_Ioc, ProbabilityTheory.Kernel.partialTraj_comp_partialTraj, EuclideanSpace.volume_ball_fin_three, ProbabilityTheory.covarianceBilin_apply_basisFun, MeasureTheory.hausdorffMeasure_measurePreserving_funUnique, MeasureTheory.Measure.pi_closedBall, pi_indepFun_of_prod_bcf, OrthonormalBasis.measurePreserving_repr_symm, MeasureTheory.ContinuousOn.hasBoxIntegral, indep_comap_process_of_prod_bcf, MeasureTheory.addHaarMeasure_eq_volume_pi, MeasurableEquiv.piEquivPiSubtypeProd_symm_apply, MeasureTheory.Filtration.piFinset_eq_comap_restrict, measurable_equivCurry_symm, measurable_updateFinset', ProbabilityTheory.iIndepFun.hasGaussianLaw, ZLattice.volume_image_eq_volume_div_covolume, Real.map_linearMap_volume_pi_eq_smul_volume_pi, MeasureTheory.volume_preserving_piFinTwo, indepSets_comap_pi_of_bcf, process_indepFun_of_bcf, Pi.measurableSMul, Complex.measurableEquivPi_symm_apply, pi_le_borel_pi, Pi.measurableNeg, indepSets_comap_pi_of_prod_bcf, MeasureTheory.Measure.map_linearMap_addHaar_pi_eq_smul_addHaar, MeasureTheory.Measure.instIsProbabilityMeasureForallInfinitePi, MeasureTheory.Measure.quasiMeasurePreserving_eval, MeasurableEquiv.piMeasurableEquivTProd_apply, indepFun_pi_of_prod_bcf, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, MeasureTheory.integral_fin_nat_prod_eq_prod, MeasureTheory.charFunDual_eq_pi_iff, Set.measurable_restrict, Complex.volume_preserving_equiv_pi, measurable_uniqueElim, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, EuclideanSpace.volume_ball_fin_two, pi_indepFun_of_bcf, ProbabilityTheory.Kernel.partialTraj_self, ProbabilityTheory.iIndepFun_iff_map_fun_eq_infinitePi_mapβ‚€', ContinuousLinearMap.measurable_coe, MeasurableEquiv.piCurry_symm_apply, EuclideanSpace.volume_ball, MeasureTheory.cylinderEvents_le_pi, ProbabilityTheory.IdentDistrib.pi, Pi.instMeasurableConstVAdd, ProbabilityTheory.iIndepFun_uncurry_infinitePi, MeasurableEquiv.coe_curry_symm, MeasurableEquiv.coe_sumPiEquivProdPi_symm, MeasureTheory.IsProjectiveMeasureFamily.measure_univ_eq, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', Pi.measurableSub, MeasureTheory.Measure.ae_le_pi, indepSets_comap_process_of_bcf, MeasureTheory.Measure.univ_pi_Iio_ae_eq_Iic, measurableEquiv_nat_bool_of_countablyGenerated, indepFun_process_of_prod_bcf, MeasureTheory.Measure.infinitePi_map_pi, MeasurableEquiv.finTwoArrow_symm_apply, NumberField.mixedEmbedding.measurable_polarCoord_symm, ProbabilityTheory.iIndepFun_iff_charFun_pi, MeasureTheory.measurePreserving_piFinsetUnion, MeasureTheory.Measure.toBoxAdditive_apply, MeasureTheory.volume_measurePreserving_arrowProdEquivProdArrow, MeasureTheory.Measure.pi.isNegInvariant, MeasurableEquiv.coe_setOf, MeasureTheory.charFunDual_eq_pi_iff', generateFrom_pi, MeasureTheory.generateFrom_squareCylinders, MeasureTheory.Measure.infinitePiNat_map_restrict, Pi.measurableAddβ‚‚, Preorder.measurable_frestrictLe, MeasureTheory.partialTraj_const_restrictβ‚‚, IsUnifLocDoublingMeasure.pi, MeasureTheory.Filtration.piLE_eq_comap_frestrictLe, MeasureTheory.volume_preserving_piUnique, MeasureTheory.Measure.pi_def, ProbabilityTheory.iIndepFun_uncurry_infinitePi', indep_comap_pi_of_prod_bcf, volume_euclideanSpace_eq_dirac, MeasureTheory.Measure.ae_eq_pi, MeasurableEquiv.piFinTwo_apply, measurable_piEquivPiSubtypeProd_symm, measurable_piCurry_symm, ProbabilityTheory.Kernel.iIndepFun.indepFun_finset, MeasureTheory.Integrable.fintype_prod, MeasureTheory.IsProjectiveLimit.measure_univ_unique, MeasurableEquiv.setOf_symm_apply, MeasurableEquiv.coe_piCurry, BoxIntegral.Box.measurableSet_Ioo, ContinuousLinearMap.measurable_apply', ProbabilityTheory.map_restrict_eq_of_forall_ae_eq, MeasureTheory.Measure.infinitePi_singleton, ProbabilityTheory.IsRatCondKernelCDF.measurable, Pi.measurableDivβ‚‚, ProbabilityTheory.IsMeasurableRatCDF.measurable, MeasureTheory.Measure.pi.isAddHaarMeasure, ProbabilityTheory.iIndepFun_iff_map_fun_eq_infinitePi_map, MeasureTheory.Measure.infinitePi_map_restrict, measurable_mapNatBool, Pi.instMeasurableSingletonClass, indicator_indepFun_process_of_prod_bcf, MeasureTheory.charFunDual_pi, indepSets_comap_process_of_prod_bcf, ProbabilityTheory.iIndepFun_iff_map_fun_eq_pi_map, EuclideanSpace.coe_measurableEquiv, measurable_IocProdIoc, MeasureTheory.Measure.tendsto_eval_ae_ae, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, MeasurableEquiv.coe_piCurry_symm, MeasureTheory.Measure.pi_empty_univ, MeasureTheory.generateFrom_measurableCylinders, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, MeasureTheory.measurePreserving_piEquivPiSubtypeProd, MeasureTheory.volume_preserving_finTwoArrow, MeasureTheory.GridLines.T_univ, MeasureTheory.Measure.pi_map_piOptionEquivProd, MeasureTheory.FiniteMeasure.pi_map_pi, MeasureTheory.FiniteMeasure.toMeasure_pi, comap_le_comap_pi, EuclideanSpace.measurableEquiv_toEquiv, ProbabilityTheory.Kernel.iIndepFun.indepFun_finsetβ‚€, measurable_piCurry, MeasureTheory.measurePreserving_pi_empty, MeasureTheory.Measure.ae_pi_le_pi, measurable_injection_nat_bool_of_countablySeparated, MeasureTheory.Measure.ae_eq_set_pi, MeasureTheory.Measure.pi_Iio_ae_eq_pi_Iic, MeasureTheory.Measure.pi.instIsFiniteMeasure, Pi.opensMeasurableSpace_of_subsingleton, pi_eq_generateFrom_projections, MeasureTheory.Measure.instIsProbabilityMeasureForallInfinitePiNat, MeasureTheory.measurableCylinders.measurableSet, MeasureTheory.measurePreserving_finTwoArrow, MeasureTheory.Measure.pi_pi, OrthonormalBasis.measurePreserving_measurableEquiv, MeasureTheory.mem_measurableCylinders, measurable_equivCurry, MeasureTheory.Measure.pi.isAddLeftInvariant, NumberField.mixedEmbedding.fundamentalCone.measurableSet_paramSet, ProbabilityTheory.Kernel.partialTraj_zero, MeasurableEquiv.setOf_apply, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi, Pi.measurableVAdd, Pi.measurableMul, MeasureTheory.volume_preserving_piEquivPiSubtypeProd, ProbabilityTheory.setBernoulli_apply, NumberField.mixedEmbedding.fundamentalCone.measurableSet_normLeOne, MeasureTheory.charFun_eq_pi_iff, Real.volume_preserving_transvectionStruct, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.Measure.infinitePi_map_piCurry_symm, measurable_curry, Pi.borelSpace_of_subsingleton, MeasureTheory.Measure.pi.isOpenPosMeasure, MeasureTheory.Measure.pi.instIsProbabilityMeasure, EuclideanSpace.volume_closedBall, ProbabilityTheory.iIndepFun.indepFun_finsetβ‚€, NumberField.mixedEmbedding.measurable_polarSpaceCoord_symm, MeasureTheory.volume_preserving_funUnique, EuclideanSpace.coe_measurableEquiv_symm, MeasureTheory.Measure.infinitePi_pi_univ, MeasurableSet.univ_pi, measurableSet_pi, MeasureTheory.Measure.ae_eval_ne, measurable_piCongrLeft, MeasureTheory.cylinderEvents_univ, MeasureTheory.Measure.infinitePi_map_restrict', MeasureTheory.Measure.infinitePi_pi_of_countable, MeasureTheory.measurePreserving_sumPiEquivProdPi, MeasurableEquiv.coe_curry, MeasureTheory.Measure.infinitePi_map_curry, MeasureTheory.isProjectiveLimit_nat_iff', MeasurableEquiv.piMeasurableEquivTProd_symm_apply, MeasureTheory.FiniteMeasure.mass_pi, MeasureTheory.Measure.piContent_eq_infinitePiNat, ProbabilityTheory.iIndepFun.indepFun_finset, measurable_piEquivPiSubtypeProd, ZLattice.covolume_eq_det, MeasurableSet.pi, MeasureTheory.Measure.pi.isFiniteMeasureOnCompacts, ProbabilityTheory.setBernoulli_eq_map, measurable_update, MeasurableEquiv.piFinSuccAbove_symm_apply, MeasureTheory.Measure.pi_noAtoms', MeasurableEquiv.piFinSuccAbove_apply
bridge: MeasureTheory.SimpleFunc.hasBoxIntegral, MeasureTheory.SimpleFunc.box_integral_eq_integral
prod πŸ“–CompOp
8 mathmath: ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_comp_trim, ProbabilityTheory.Kernel.measurable_densityProcess_countableFiltration_aux, MeasureTheory.AEStronglyMeasurable.comp_snd_map_prod_id, comap_prodMk, MeasureTheory.measurable_update_cylinderEvents', comap_prodMap, ProbabilityTheory.compProd_trim_condExpKernel, MeasureTheory.Integrable.comp_snd_map_prod_id

Theorems

NameKindAssumesProvesValidatesDepends On
comap_le_comap_pi πŸ“–mathematicalβ€”MeasurableSpace
instLE
comap
pi
β€”comap_iSup
le_iSup_of_le
comap_comp
le_refl

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instMeasurableSingletonClass πŸ“–mathematicalMeasurableSingletonClassMeasurableSpace.piβ€”MeasurableSet.univ_pi
MeasurableSingletonClass.measurableSet_singleton
Set.univ_pi_singleton

Prod

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
686 mathmath: MeasureTheory.quasiMeasurePreserving_add, ProbabilityTheory.Kernel.measurable_rnDerivAux, MeasureTheory.lintegral_prod_swap, MeasureTheory.quasiMeasurePreserving_add_swap, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, ProbabilityTheory.stieltjesOfMeasurableRat_ae_eq, ProbabilityTheory.Kernel.swapLeft_zero, ProbabilityTheory.Kernel.instIsMarkovKernelProdSwap, MeasureTheory.NullMeasurable.comp_snd, ProbabilityTheory.indepFun_prod, ProbabilityTheory.Kernel.sectR_apply, ProbabilityTheory.lintegral_condCDF, ProbabilityTheory.condDistrib_apply_of_ne_zero, NumberField.mixedEmbedding.measurable_polarCoordReal_symm, ProbabilityTheory.Kernel.instIsMarkovKernelCondKernelBorel, ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy, ProbabilityTheory.IsCondKernelCDF.toKernel_Iic, ProbabilityTheory.Kernel.parallelComp_comp_parallelComp, ProbabilityTheory.Kernel.parallelComp_comp_prod, MeasureTheory.ProbabilityMeasure.map_prod_map, MeasureTheory.Measure.swap_comp, MeasureTheory.measurePreserving_prod_mul_swap, MeasureTheory.quasiMeasurePreserving_inv_mul, ProbabilityTheory.lintegral_toKernel_univ, measurable_deriv_with_param, MeasureTheory.measurePreserving_prod_neg_add, ProbabilityTheory.Kernel.partialTraj_succ_of_le, MeasureTheory.Measure.prod.instNoAtoms_fst, MeasurableAddβ‚‚.measurable_add, MeasureTheory.MemLp.comp_snd, ProbabilityTheory.Kernel.map_frestrictLe_trajMeasure_compProd_eq_map_trajMeasure, MeasureTheory.Measure.AbsolutelyContinuous.prod, ProbabilityTheory.Kernel.parallelComp_of_not_isSFiniteKernel_left, MeasureTheory.quasiMeasurePreserving_div_of_right_invariant, ProbabilityTheory.Kernel.swap_swap, MeasureTheory.measure_preimage_fst_singleton_eq_tsum, MeasureTheory.Measure.prod.instSigmaFinite, ProbabilityTheory.Kernel.IsMarkovKernel.compProd, measurable_update', ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk, MeasureTheory.ProbabilityMeasure.prod_prod, ProbabilityTheory.setIntegral_condCDF, MeasureTheory.Integrable.mul_prod, MeasureTheory.Measure.comp_compProd_comm, HasCompactSupport.measurable_of_prod, ProbabilityTheory.compProd_posterior_eq_map_swap, ProbabilityTheory.Kernel.parallelComp_comm, MeasureTheory.ProbabilityMeasure.prod_swap, ProbabilityTheory.Kernel.apply_eq_measure_condKernel_of_compProd_eq, MeasurableEquiv.finTwoArrow_apply, MeasureTheory.measurePreserving_prod_mul_swap_right, ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMk_prodMk, MeasureTheory.Measure.condKernel_def, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat_rat, MeasureTheory.setIntegral_prod_swap, MeasureTheory.Measure.nullMeasurable_comp_snd, MeasureTheory.Measure.snd_map_swap, ProbabilityTheory.Kernel.IsSFiniteKernel.prodMkLeft, ProbabilityTheory.IsRatCondKernelCDF.setIntegral, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_comp_trim, measurable_fun_prod, ProbabilityTheory.IsCondKernelCDF.integral, Real.integrable_prod_sub, MeasureTheory.Measure.map_fst_prod, ProbabilityTheory.Kernel.swapRight_apply, ProbabilityTheory.Kernel.lintegral_fst, MeasurableMulβ‚‚.measurable_mul, ProbabilityTheory.Kernel.IsCondKernel.isProbabilityMeasure_ae, measurableSet_graph, ProbabilityTheory.Kernel.fst_comp, MeasureTheory.measurePreserving_prod_div_swap, MeasurableEquiv.piFinTwo_symm_apply, MeasureTheory.Measure.snd_zero, MeasureTheory.measurePreserving_prod_inv_mul_swap, ProbabilityTheory.Kernel.isSFiniteKernel_prodMkRight_iff, MeasureTheory.volume_preserving_piFinsetUnion, MeasureTheory.Measure.prod.instIsOpenPosMeasure, MeasureTheory.MeasurePreserving.prod, ProbabilityTheory.Kernel.swap_apply, ProbabilityTheory.Kernel.measurable_densityProcess_countableFiltration_aux, nullMeasurableSet_region_between_co, ProbabilityTheory.Kernel.snd_comp, ProbabilityTheory.Kernel.snd_zero, MeasureTheory.setIntegral_prod_mul, MeasureTheory.ProbabilityMeasure.measurable_fun_prod, ProbabilityTheory.Kernel.compProd_restrict_left, measurable_lt, MeasurableEmbedding.prodMap, ProbabilityTheory.integral_stieltjesOfMeasurableRat, MeasureTheory.Measure.nullMeasurableSet_prod, MeasureTheory.measurePreserving_finTwoArrow_vec, nullMeasurableSet_regionBetween, aemeasurable_lineDeriv_uncurry, MeasureTheory.Measure.prod.instIsAddLeftInvariant, ProbabilityTheory.IsRatCondKernelCDFAux.measurable, MeasureTheory.measurePreserving_mul_prod_inv_right, ProbabilityTheory.Kernel.HasSubgaussianMGF.add_comp, ProbabilityTheory.Kernel.fst_prodMkRight, ProbabilityTheory.Kernel.parallelComp_apply_prod, MeasureTheory.Integrable.comp_snd, ProbabilityTheory.Kernel.compProd_zero_right, MeasurableSpace.instCountablyGeneratedProd, MeasureTheory.Measure.prod_prod_le, ProbabilityTheory.covariance_fst_snd_prod, MeasurableEquiv.coe_sumPiEquivProdPi, MeasureTheory.ProbabilityMeasure.toMeasure_prod, MeasureTheory.prod_withDensityβ‚€, WithLp.borelSpace, ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMkβ‚€, MeasurableEquiv.piEquivPiSubtypeProd_apply, MeasureTheory.Measure.lintegral_conv_eq_lintegral_sum, ProbabilityTheory.Kernel.instIsMarkovKernelCondKernelUnitReal, MeasureTheory.hausdorffMeasure_measurePreserving_piFinTwo, ProbabilityTheory.Kernel.prodMkRight_add, Complex.measurableEquivRealProd_apply, nullMeasurableSet_region_between_cc, MeasureTheory.FiniteMeasure.mass_prod, ProbabilityTheory.Kernel.fst_real_apply, ProbabilityTheory.stieltjesOfMeasurableRat_unit_prod, MeasureTheory.Measure.nullMeasurableSet_preimage_fst, MeasureTheory.TendstoInDistribution.prodMk_of_tendstoInMeasure_const, MeasurableSupβ‚‚.measurable_sup, ProbabilityTheory.Kernel.swap_prod, ProbabilityTheory.Kernel.setIntegral_densityProcess_of_mem, MeasureTheory.volume_preserving_prodAssoc, ProbabilityTheory.Kernel.map_prod_eq, MeasureTheory.Measure.snd_map_prodMkβ‚€, MeasureTheory.Integrable.comp_snd_map_prodMk, MeasureTheory.prod_withDensity_left, ProbabilityTheory.Kernel.prodMkLeft_apply, MeasurableEquiv.coe_IicProdIoc_symm, ProbabilityTheory.Kernel.comapRight_compProd_id_prod, MeasureTheory.charFunDual_prod, ContinuousLinearMap.measurable_applyβ‚‚, MeasureTheory.Measure.fst_map_swap, MeasureTheory.Measure.instSFiniteProdCompProd, borelSpace, Module.Basis.prod_addHaar, MeasureTheory.Measure.MutuallySingular.compProd_of_left, MeasureTheory.charFun_eq_prod_iff, measurable_from_prod_countable_right, AEMeasurable.comp_snd, MeasureTheory.quasiMeasurePreserving_neg_add_swap, ProbabilityTheory.condDistrib_ae_eq_iff_measure_eq_compProd, ProbabilityTheory.Kernel.measurable_density, ProbabilityTheory.Kernel.instIsCondKernel_zero, ProbabilityTheory.compProd_map_condDistrib, aemeasurable_deriv_with_param, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, MeasureTheory.Measure.mutuallySingular_compProd_right_iff, MeasureTheory.FiniteMeasure.prod_swap, ProbabilityTheory.Kernel.prod_apply, ProbabilityTheory.Kernel.isSFiniteKernel_prodMkRight_unit, ProbabilityTheory.Kernel.prod_const_comp, ProbabilityTheory.Kernel.setIntegral_densityProcess_of_le, MeasureTheory.Measure.compProd_id, ProbabilityTheory.isRatCondKernelCDF_preCDF, ProbabilityTheory.Kernel.IsMarkovKernel.swapRight, ProbabilityTheory.Kernel.le_compProd_apply, ProbabilityTheory.Kernel.prodMkLeft_add, MeasurablePow.measurable_pow, ProbabilityTheory.Kernel.fst_apply, MeasureTheory.Measure.pi_prod_map_IocProdIoc, MeasureTheory.FiniteMeasure.map_fst_prod, MeasurableDivβ‚‚.measurable_div, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_map_map, ProbabilityTheory.Kernel.compProd_eq_sum_compProd, MeasureTheory.charFunDual_eq_prod_iff, MeasureTheory.measurePreserving_prod_add_right, MeasureTheory.volume_preserving_piFinSuccAbove, ProbabilityTheory.IsCondKernelCDF.setIntegral, ProbabilityTheory.bayesRisk_compProd_le_bayesRisk, MeasureTheory.Measure.prod.instIsMulRightInvariant, ProbabilityTheory.Kernel.ae_kernel_lt_top, ProbabilityTheory.Kernel.prod_prodMkRight_comp_deterministic_prod, MeasureTheory.Measure.condKernel_apply_of_ne_zero, ProbabilityTheory.Kernel.copy_apply, ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMk_prodMkβ‚€, MeasureTheory.Measure.compProd_assoc', ProbabilityTheory.Kernel.parallelComp_def, ProbabilityTheory.Kernel.prod_of_not_isSFiniteKernel_right, MeasureTheory.Measure.compProd_apply_univ, MeasureTheory.Measure.AbsolutelyContinuous.compProd_right, ProbabilityTheory.Kernel.compProd_of_not_isSFiniteKernel_left, ProbabilityTheory.Kernel.fst_prodMkLeft, ProbabilityTheory.Kernel.partialTraj_compProd_traj, ProbabilityTheory.Kernel.IsMarkovKernel.prod, ProbabilityTheory.Kernel.lintegral_prodMkRight, MeasureTheory.ProbabilityMeasure.map_fst_prod, ProbabilityTheory.Kernel.measurable_densityProcess, MeasureTheory.Measure.ext_prod₃_iff', MeasurableSubβ‚‚.measurable_sub, ProbabilityTheory.IsCondKernelCDF.setLIntegral, ProbabilityTheory.Kernel.condKernelCountable_apply, measurableSet_pi_polarCoord_target, MeasureTheory.Measure.comap_swap, MeasureTheory.measurePreserving_add_prod_neg_right, MeasurableVAddβ‚‚.measurable_vadd, MeasureTheory.measurePreserving_arrowProdEquivProdArrow, measurableSet_swap_iff, MeasureTheory.Measure.FiniteAtFilter.prod, MeasureTheory.Measure.snd_sum, ProbabilityTheory.Kernel.measurable_rnDeriv, measurableSet_prod_of_nonempty, MeasureTheory.Measure.compProd_map, MeasureTheory.Measure.AbsolutelyContinuous.compProd, ProbabilityTheory.Kernel.condKernel_apply_eq_condKernel, ProbabilityTheory.Kernel.partialTraj_le_def, ProbabilityTheory.Kernel.meas_countablePartitionSet_le_of_fst_le, StandardBorelSpace.prod, ProbabilityTheory.Kernel.IsMarkovKernel.swapLeft, ProbabilityTheory.Kernel.tendsto_integral_density_of_monotone, ProbabilityTheory.condIndepFun_iff_compProd_map_prod_eq_compProd_prod_map_map, ProbabilityTheory.Kernel.parallelComp_sum_left, ProbabilityTheory.Kernel.prodMkRight_zero, ProbabilityTheory.Kernel.instIsSFiniteKernelProdParallelComp, ProbabilityTheory.Kernel.snd_prodMkRight, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, volume_regionBetween_eq_lintegral', measurable_prodMk_right, generateFrom_prod, ProbabilityTheory.Kernel.prodAssoc_symm_prod, MeasureTheory.measurePreserving_prod_sub_swap, ProbabilityTheory.posterior_prod_id_comp, Measurable.prodMk, MeasurableSet.prod, NumberField.mixedEmbedding.covolume_idealLattice, MeasurableEmbedding.prodMk_right, NumberField.mixedEmbedding.volume_preserving_negAt, MeasureTheory.Measure.map_prod_map, MeasureTheory.Measure.compProd_id_eq_copy_comp, MeasureTheory.measurePreserving_piFinTwo, measurableSet_region_between_co, MeasureTheory.quasiMeasurePreserving_neg_add, MeasureTheory.Measure.pi_prod_map_IicProdIoc, ProbabilityTheory.Kernel.prodAssoc_prod, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat, MeasureTheory.hausdorffMeasure_prod_real, MeasureTheory.Measure.prod_swap, MeasurableInfβ‚‚.measurable_inf, measurableSet_region_between_oc, ProbabilityTheory.Kernel.isSFiniteKernel_prodMkLeft_unit, MeasureTheory.measurePreserving_prod_div, MeasureTheory.Measure.prod_restrict, ProbabilityTheory.Kernel.IsFiniteKernel.prodMkRight, MeasureTheory.Measure.zero_prod, MeasureTheory.Measure.prod_prod, ProbabilityTheory.Kernel.snd_map_prod, MeasureTheory.Measure.compProd_sum_left, MeasureTheory.Measure.prod.instIsAddRightInvariant, ProbabilityTheory.Kernel.compProd_prodMkLeft_eq_comp, MeasureTheory.Measure.parallelComp_comp_compProd, ProbabilityTheory.Kernel.setIntegral_density_of_measurableSet, ProbabilityTheory.Kernel.prod_of_not_isSFiniteKernel_left, MeasureTheory.Measure.prod.instIsProbabilityMeasure, ProbabilityTheory.Kernel.parallelComp_id_right_comp_parallelComp, ProbabilityTheory.Kernel.IsFiniteKernel.swapLeft, ProbabilityTheory.aestronglyMeasurable_comp_snd_map_prodMk_iff, MeasureTheory.partialTraj_const, ProbabilityTheory.Kernel.swap_copy, MeasureTheory.Measure.mutuallySingular_compProd_iff, ProbabilityTheory.Kernel.compProd_eq_zero_iff, MeasureTheory.Measure.quasiMeasurePreserving_fst, MeasureTheory.measurePreserving_prodAssoc, measurable_from_prod_countable_right', ProbabilityTheory.IdentDistrib.prodMk, MeasureTheory.continuous_integral_integral, stronglyMeasurable_lineDeriv_uncurry, ProbabilityTheory.Kernel.prodMkRight_apply, MeasureTheory.Measure.fst_apply, ProbabilityTheory.Kernel.IsSFiniteKernel.prod, MeasureTheory.Measure.fst_univ, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, ProbabilityTheory.Kernel.measurable_singularPart_fun, MeasureTheory.integral_prod_mul, ProbabilityTheory.Kernel.comap_prod, ProbabilityTheory.Kernel.partialTraj_succ_self, MeasureTheory.quasiMeasurePreserving_sub_of_right_invariant, ProbabilityTheory.Kernel.instIsMarkovKernelProdOfSectL, ProbabilityTheory.Kernel.continuous_integral_integral, MeasureTheory.Measure.instIsZeroOrProbabilityMeasureProdCompProdOfIsZeroOrMarkovKernel, ProbabilityTheory.indepFun_iff_charFunDual_prod', ProbabilityTheory.setLIntegral_toKernel_univ, MeasureTheory.Measure.prod.instIsMulLeftInvariant, ProbabilityTheory.Kernel.parallelComp_comp_copy, ProbabilityTheory.integrable_comp_snd_map_prodMk_iff, ProbabilityTheory.condDistrib_snd_prod, ProbabilityTheory.Kernel.setIntegral_densityProcess, aestronglyMeasurable_lineDeriv_uncurry, instMeasurableSingletonClass, MeasureTheory.prod_withDensity_leftβ‚€, ProbabilityTheory.Kernel.swap_comp_eq_map, MeasureTheory.Measure.compProd_eq_comp_prod, measurable_IicProdIoc, MeasureTheory.measurePreserving_piFinSuccAbove, ProbabilityTheory.Kernel.integral_densityProcess, MeasureTheory.Measure.dirac_prod_dirac, MeasureTheory.Measure.MutuallySingular.compProd_of_right', ProbabilityTheory.condCDF_eq_stieltjesOfMeasurableRat_unit_prod, MeasureTheory.measure_preimage_snd_singleton_eq_sum, ProbabilityTheory.Kernel.snd_map_prod_id, MeasureTheory.prod_withDensity_rightβ‚€, MeasureTheory.Measure.IicSnd_apply, MeasureTheory.Measure.dirac_unit_compProd_const, ProbabilityTheory.indepFun_iff_charFun_prod, MeasurableEquiv.coe_IicProdIoc, ProbabilityTheory.IsCondKernelCDF.measurable, MeasureTheory.Measure.compProd_deterministic, MeasureTheory.Measure.quasiMeasurePreserving_snd, NumberField.mixedEmbedding.measurableSet_fundamentalCone, ProbabilityTheory.Kernel.snd_prodMkLeft, MeasureTheory.Measure.prod.instIsLocallyFiniteMeasure, MeasureTheory.Measure.integrable_compProd_snd_iff, ProbabilityTheory.Kernel.instIsMarkovKernelCondKernelUnitBorel, MeasureTheory.Measure.absolutelyContinuous_compProd_left_iff, MeasureTheory.integral_continuousLinearMap_prod, Measurable.prodMap, ProbabilityTheory.Kernel.measurableSet_mutuallySingularSet, MeasureTheory.Measure.fst_add, ProbabilityTheory.Kernel.setLIntegral_density, MeasureTheory.Measure.nullMeasurableSet_prod_of_ne_zero, Complex.measurableEquivRealProd_symm_polarCoord_symm_apply, Complex.volume_preserving_equiv_real_prod, ProbabilityTheory.variance_add_prod, ProbabilityTheory.Kernel.lintegral_snd, ProbabilityTheory.IsGaussian.map_rotation_eq_self, ProbabilityTheory.hasFiniteIntegral_prodMk_left, ProbabilityTheory.Kernel.deterministic_comp_copy, MeasureTheory.Measure.measurePreserving_homeomorphUnitSphereProd, MeasureTheory.Integrable.convolution_integrand, ProbabilityTheory.Kernel.IsSFiniteKernel.swapLeft, ProbabilityTheory.isCondKernelCDF_stieltjesOfMeasurableRat, ProbabilityTheory.Kernel.parallelComp_sum_right, NumberField.mixedEmbedding.covolume_integerLattice, ProbabilityTheory.Kernel.comap_sectL, MeasureTheory.integral_continuousLinearMap_prod', MeasureTheory.Measure.dirac_prod, MeasureTheory.Measure.MutuallySingular.compProd_of_right, MeasureTheory.pdf.indepFun_iff_pdf_prod_eq_pdf_mul_pdf, ProbabilityTheory.Kernel.integral_density, ProbabilityTheory.Kernel.compProd_apply_univ_le, measurableSet_regionBetween, ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.swapRight, ProbabilityTheory.Kernel.IsSFiniteKernel.prodMkRight, ProbabilityTheory.Kernel.lintegral_density, MeasurableEq.measurableSet_diagonal, ProbabilityTheory.Kernel.sectR_zero, ProbabilityTheory.iIndepFun.indepFun_prodMk, MeasureTheory.quasiMeasurePreserving_mul_swap, ProbabilityTheory.Kernel.compProd_sum_left, ProbabilityTheory.Kernel.swapRight_eq, ProbabilityTheory.Kernel.measurable_densityProcess_aux, MeasureTheory.Measure.prod.instIsAddHaarMeasure, MeasureTheory.Measure.compProd_zero_left, ProbabilityTheory.Kernel.sectL_zero, MeasureTheory.Measure.instIsFiniteMeasureProdCompProdOfIsFiniteKernel, MeasureTheory.Integrable.comp_fst_iff, MeasurableEquiv.piEquivPiSubtypeProd_symm_apply, ProbabilityTheory.Kernel.prodComm_prod, ProbabilityTheory.Kernel.prodMkLeft_apply', ProbabilityTheory.Kernel.const_prod_comp, ProbabilityTheory.Kernel.snd_eq, ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk_prodMk, measurable_swap, MeasureTheory.Measure.prod_dirac, measurable_lineDeriv_uncurry, ProbabilityTheory.condDistrib_def, MeasureTheory.StronglyMeasurable.comp_snd, MeasureTheory.Integrable.comp_fst, ProbabilityTheory.Kernel.deterministic_prod_deterministic, measurable_le, ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_prodMk, measurable_updateFinset', MeasureTheory.Measure.compProd_apply_prod, ProbabilityTheory.parallelProd_posterior_comp_copy_comp, ProbabilityTheory.Kernel.isFiniteKernel_of_isFiniteKernel_snd, ProbabilityTheory.Kernel.fst_apply', MeasureTheory.integrable_continuousLinearMap_prod', MeasureTheory.volume_preserving_piFinTwo, generateFrom_prod_eq, ProbabilityTheory.Kernel.IsMarkovKernel.prodMkRight, MeasureTheory.Measure.set_prod_ae_eq, ProbabilityTheory.Kernel.fst_eq, ProbabilityTheory.setLIntegral_toKernel_prod, ProbabilityTheory.HasGaussianLaw.prodMk, MeasureTheory.measurePreserving_prod_sub, MeasureTheory.Measure.snd_univ, MeasureTheory.MemLp.comp_fst, measurableSet_lineDifferentiableAt_uncurry, MeasureTheory.Measure.snd_map_prodMk, MeasureTheory.Measure.ext_prod₃_iff, ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.prod, ProbabilityTheory.Kernel.snd_apply', MeasureTheory.ProbabilityMeasure.continuous_prod, ProbabilityTheory.Kernel.snd_apply, MeasureTheory.integral_prod_swap, AEMeasurable.prodMk, MeasureTheory.measurePreserving_prod_add, nullMeasurableSet_lt', ProbabilityTheory.Kernel.deterministic_parallelComp_deterministic, MeasureTheory.measurePreserving_mul_prod, ProbabilityTheory.swap_compProd_posterior, MeasureTheory.Measure.prod_sum_right, MeasureTheory.Measure.iInf_rat_gt_prod_Iic, MeasurableSMulβ‚‚.measurable_smul, MeasurableEmbedding.prodMk_left, measurable_snd, MeasureTheory.Measure.prod_add, ProbabilityTheory.Kernel.compProd_preimage_fst, ProbabilityTheory.integral_condCDF, ProbabilityTheory.Kernel.instIsMarkovKernelCondKernel, ProbabilityTheory.Kernel.compProd_eq_sum_compProd_left, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, MeasureTheory.quasiMeasurePreserving_sub, MeasureTheory.measurePreserving_prod_add_swap_right, MeasureTheory.Measure.compProd_assoc, ProbabilityTheory.Kernel.prodMkRight_apply', ProbabilityTheory.Kernel.compProd_add_right, ProbabilityTheory.Kernel.parallelComp_of_not_isSFiniteKernel_right, MeasurableEquiv.coe_sumPiEquivProdPi_symm, ProbabilityTheory.variance_dual_prod', measurableSet_le', generateFrom_eq_prod, ProbabilityTheory.Kernel.prod_prodMkLeft_comp_prod_deterministic, ProbabilityTheory.isRatCondKernelCDFAux_preCDF, ProbabilityTheory.Kernel.swapRight_zero, MeasureTheory.Measure.prod_smul_right, ProbabilityTheory.Kernel.compProd_apply_univ, MeasureTheory.measurePreserving_add_prod, MeasureTheory.charFunDual_prod', MeasureTheory.Measure.fst_map_prodMkβ‚€, volume_regionBetween_eq_integral', ProbabilityTheory.isCondKernelCDF_condCDF, ProbabilityTheory.Kernel.instIsMarkovKernelProdOfSectR, MeasureTheory.integrable_swap_iff, MeasurableEquiv.finTwoArrow_symm_apply, NumberField.mixedEmbedding.measurable_polarCoord_symm, MeasureTheory.Measure.compProd_add_left, MeasureTheory.Measure.prod_sum, MeasureTheory.Integrable.comp_snd_iff, MeasureTheory.Measure.prod.instIsHaarMeasure, MeasureTheory.Measure.mutuallySingular_compProd_left_iff, MeasureTheory.measurePreserving_piFinsetUnion, ProbabilityTheory.instIsMarkovKernel_toKernel, MeasureTheory.integral_fun_fst, MeasureTheory.volume_measurePreserving_arrowProdEquivProdArrow, ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.compProd, MeasureTheory.Integrable.op_fst_snd, ProbabilityTheory.Kernel.parallelComp_zero_right, ProbabilityTheory.Kernel.compProd_zero_left, MeasureTheory.Measure.prod_comp_left, MeasureTheory.AEStronglyMeasurable.comp_snd_iff, ProbabilityTheory.Kernel.map_prodMkRight, MeasureTheory.Measure.prod.instSFinite, MeasureTheory.lintegral_prod_le, ProbabilityTheory.Kernel.prod_zero, MeasureTheory.Measure.absolutelyContinuous_compProd_iff', ProbabilityTheory.iIndepFun.indepFun_prodMk_prodMk, ProbabilityTheory.Kernel.compProd_restrict, MeasureTheory.Measure.prod.instIsFiniteMeasure, MeasureTheory.FiniteMeasure.prod_prod, ProbabilityTheory.Kernel.compProd_assoc, ProbabilityTheory.setLIntegral_condKernel_eq_measure_prod, Measurable.map_prodMk_right, ProbabilityTheory.Kernel.compProd_def, ProbabilityTheory.Kernel.fst_map_id_prod, MeasureTheory.Measure.prod.instNoAtoms_snd, ProbabilityTheory.Kernel.IsFiniteKernel.prod, measurable_fderiv_with_param, ProbabilityTheory.IndepFun.hasGaussianLaw, ProbabilityTheory.iIndepFun.indepFun_prodMk_prodMkβ‚€, MeasureTheory.Measure.prod.instIsFiniteMeasureOnCompacts, measurableSet_of_differentiableAt_of_isComplete_with_param, ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral_iInf_rat_gt, MeasureTheory.prod_withDensity, MeasurableEquiv.piFinTwo_apply, ProbabilityTheory.Kernel.condKernel_def, measurable_piEquivPiSubtypeProd_symm, measurable_from_prod_countable', MeasureTheory.AEStronglyMeasurable.comp_fst, MeasureTheory.Measure.compProd_sum_right, ProbabilityTheory.Kernel.compProd_add_left, ProbabilityTheory.Kernel.indepFun_iff_compProd_map_prod_eq_compProd_prod_map_map, ProbabilityTheory.Kernel.instIsMarkovKernelCondKernelReal, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight, MeasureTheory.Measure.compProd_of_not_sfinite, ProbabilityTheory.Kernel.sectL_apply, measurable_from_prod_countable_left, MeasureTheory.Measure.nullMeasurableSet_preimage_snd, MeasureTheory.measureReal_prod_prod, MeasureTheory.integrable_continuousLinearMap_prod, MeasureTheory.Measure.instIsProbabilityMeasureProdCompProdOfIsMarkovKernel, ProbabilityTheory.IsRatCondKernelCDF.measurable, ProbabilityTheory.Kernel.lintegral_prodMkLeft, measurableEmbedding_prodMk_left, MeasureTheory.Measure.prod_comp_right, ProbabilityTheory.Kernel.setIntegral_density, MeasureTheory.Measure.compProd_zero_right, measurable_nndist, ProbabilityTheory.condDistrib_fst_prod, MeasureTheory.lintegral_prod_mul, MeasureTheory.Measure.compProd_of_not_isSFiniteKernel, ProbabilityTheory.variance_dual_prod, volume_regionBetween_eq_integral, MeasureTheory.Measure.prod_sum_left, ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map', ProbabilityTheory.setLIntegral_condCDF, MeasureTheory.QuasiMeasurePreserving.prodMap, MeasureTheory.measurePreserving_prod_add_swap, measurableEmbedding_prod_mk_right, nullMeasurableSet_region_between_oc, MeasureTheory.measurePreserving_prod_mul, prod_le_borel_prod, MeasureTheory.Measure.prodAssoc_prod, HasCompactSupport.exists_simpleFunc_approx_of_prod, ProbabilityTheory.lintegral_stieltjesOfMeasurableRat, ProbabilityTheory.Kernel.map_prodMkLeft, MeasureTheory.Measure.compProd_eq_zero_iff, MeasureTheory.Measure.IicSnd_univ, MeasureTheory.Integrable.smul_prod, MeasureTheory.stronglyMeasurable_uncurry_of_continuous_of_stronglyMeasurable, MeasureTheory.Measure.copy_comp_map, MeasureTheory.prod_withDensity_right, HasCompactSupport.stronglyMeasurable_of_prod, measurable_IocProdIoc, ProbabilityTheory.Kernel.parallelComp_apply, ProbabilityTheory.Kernel.compProd_apply_eq_compProd_sectR, ProbabilityTheory.Kernel.map_prod_map, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkLeft, MeasureTheory.Measure.add_prod, MeasureTheory.measurePreserving_prod_inv_mul, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.measurePreserving_snd, MeasureTheory.measurePreserving_mul_prod_inv, ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.prodMkLeft, ProbabilityTheory.Kernel.isSFiniteKernel_prodMkLeft_iff, MeasureTheory.Measure.compProd_smul_left, MeasureTheory.ProbabilityMeasure.map_snd_prod, MeasureTheory.Measure.snd_add, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, measurableSet_region_between_cc, stronglyMeasurable_deriv_with_param, MeasureTheory.AEStronglyMeasurable.comp_fst_iff, ProbabilityTheory.IsCondKernelCDF.lintegral, MeasureTheory.Measure.fst_map_prodMk, ProbabilityTheory.Kernel.instIsZeroOrMarkovKernelProdParallelComp, ProbabilityTheory.Kernel.prod_const, MeasureTheory.Measure.compProd_add_right, ProbabilityTheory.Kernel.IsFiniteKernel.compProd, MeasureTheory.measurePreserving_piEquivPiSubtypeProd, ProbabilityTheory.instIsGaussianProdProdOfSecondCountableTopologyEither, MeasureTheory.Measure.measurePreserving_swap, MeasureTheory.volume_preserving_finTwoArrow, measurableSet_lt', MeasureTheory.Measure.pi_map_piOptionEquivProd, ProbabilityTheory.eq_condKernel_of_kernel_eq_compProd, Measurable.prod, MeasureTheory.Measure.prod_zero, MeasureTheory.Measure.nullMeasurable_comp_fst, ProbabilityTheory.Kernel.compProd_eq_sum_compProd_right, MeasureTheory.Measure.prod_def, measurable_from_prod_countable_left', MeasureTheory.Measure.absolutelyContinuous_compProd_right_iff, ProbabilityTheory.Kernel.fst_map_prod, ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map, MeasureTheory.Measure.snd_apply, MeasureTheory.Measure.dirac_unit_compProd, MeasureTheory.Measure.fst_zero, measurable_edist, ProbabilityTheory.Kernel.sum_prodMkRight, measurable_swap_iff, ProbabilityTheory.Kernel.swapLeft_apply', ProbabilityTheory.indepFun_prodβ‚€, MeasureTheory.AEStronglyMeasurable.comp_snd_map_prodMk, ProbabilityTheory.compProd_posterior_eq_swap_comp, ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.prodMkRight, MeasureTheory.Measure.prodMkLeft_comp_compProd, MeasureTheory.integral_prod_smul, MeasureTheory.Measure.fst_sum, ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral, MeasureTheory.FiniteMeasure.measurable_fun_prod, MeasureTheory.FiniteMeasure.map_snd_prod, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat_rat, ProbabilityTheory.rnDeriv_posterior_ae_prod, Complex.measurableEquivRealProd_symm_apply, MeasureTheory.quasiMeasurePreserving_mul, ProbabilityTheory.condKernel_const, Measurable.map_prodMk_left, MeasureTheory.measurePreserving_finTwoArrow, ProbabilityTheory.Kernel.comap_prod_swap, ProbabilityTheory.Kernel.id_prod_eq, ProbabilityTheory.Kernel.HasSubgaussianMGF.prodMkLeft_compProd, MeasureTheory.integral_fun_snd, ProbabilityTheory.Kernel.comap_sectR, MeasureTheory.AEStronglyMeasurable.convolution_integrand, MeasureTheory.measure_preimage_snd_singleton_eq_tsum, ProbabilityTheory.Kernel.parallelComp_apply_univ, ProbabilityTheory.Kernel.swap_parallelComp, MeasureTheory.StronglyMeasurable.comp_fst, ProbabilityTheory.Kernel.map_prod_swap, ProbabilityTheory.Kernel.isFiniteKernel_of_isFiniteKernel_fst, ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMk, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi, MeasureTheory.Measure.AbsolutelyContinuous.compProd_left, ProbabilityTheory.Kernel.densityProcess_def, MeasureTheory.volume_preserving_piEquivPiSubtypeProd, MeasureTheory.Measure.compProd_eq_parallelComp_comp_copy_comp, MeasureTheory.NullMeasurableSet.prod, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat, ProbabilityTheory.Kernel.lintegral_swapLeft, NumberField.mixedEmbedding.fundamentalCone.measurableSet_normLeOne, measurableSet_prod, measurable_fderiv_apply_const_with_param, aestronglyMeasurable_deriv_with_param, ProbabilityTheory.Kernel.prodMkLeft_zero, MeasureTheory.FiniteMeasure.map_prod_map, ProbabilityTheory.Kernel.compProd_apply_prod, IsUnifLocDoublingMeasure.prod, MeasureTheory.Measure.lintegral_mconv_eq_lintegral_prod, ProbabilityTheory.Kernel.partialTraj_compProd_eq_map_traj, MeasureTheory.Measure.AbsolutelyContinuous.mutuallySingular_compProd_iff, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.measurePreserving_div_prod, MeasureTheory.FiniteMeasure.zero_prod, MeasureTheory.charFun_prod, MeasureTheory.Measure.condKernel_apply, measurable_fst, volume_regionBetween_eq_lintegral, MeasureTheory.charFunDual_eq_prod_iff', MeasureTheory.AEStronglyMeasurable.comp_snd, ProbabilityTheory.Kernel.IsSFiniteKernel.compProd, ProbabilityTheory.Kernel.IsMarkovKernel.prodMkLeft, MeasureTheory.Measure.restrict_prod_eq_prod_univ, NumberField.mixedEmbedding.measurable_polarSpaceCoord_symm, ProbabilityTheory.Kernel.IsFiniteKernel.prodMkLeft, measurable_prodMk_left, MeasureTheory.Measure.absolutelyContinuous_compProd_iff, MeasureTheory.Measure.setLIntegral_condKernel_eq_measure_prod, ProbabilityTheory.Kernel.instIsFiniteKernelProdParallelComp, MeasureTheory.measurePreserving_prod_neg_add_swap, ProbabilityTheory.Kernel.sum_prodMkLeft, ProbabilityTheory.iIndepFun.indepFun_prodMkβ‚€, ProbabilityTheory.Kernel.condKernelCountable.instIsMarkovKernel, MeasureTheory.Measure.map_snd_prod, MeasureTheory.measurePreserving_add_prod_neg, MeasureTheory.Measure.IsCondKernel.apply_of_ne_zero, MeasureTheory.measure_preimage_fst_singleton_eq_sum, MeasureTheory.measurePreserving_sumPiEquivProdPi, ProbabilityTheory.Kernel.fst_zero, ProbabilityTheory.Kernel.instIsMarkovKernelProdParallelComp, MeasureTheory.NullMeasurable.comp_fst, ProbabilityTheory.Kernel.compProd_restrict_right, MeasureTheory.FiniteMeasure.toMeasure_prod, ProbabilityTheory.Kernel.parallelComp_id_left_comp_parallelComp, MeasureTheory.Measure.ext_prod_iff, ProbabilityTheory.Kernel.swapLeft_apply, ProbabilityTheory.Kernel.fst_compProd_apply, ProbabilityTheory.Kernel.partialTraj_eq_prod, MeasureTheory.FiniteMeasure.prod_zero, ProbabilityTheory.Kernel.parallelComp_zero_left, MeasureTheory.measurable_uncurry_of_continuous_of_measurable, MeasureTheory.quasiMeasurePreserving_div, ProbabilityTheory.setLIntegral_toKernel_Iic, ProbabilityTheory.IsCondKernelCDF.toKernel_apply, AEMeasurable.comp_fst, ProbabilityTheory.Kernel.IsFiniteKernel.swapRight, MeasureTheory.measurePreserving_sub_prod, MeasureTheory.measurePreserving_prod_mul_right, measurableSet_of_differentiableAt_with_param, ProbabilityTheory.IsGaussian.map_rotation_eq_self_of_forall_strongDual_eq_zero, measurable_piEquivPiSubtypeProd, MeasureTheory.Measure.prod_smul_left, MeasureTheory.Measure.measure_prod_compl_eq_zero, ProbabilityTheory.Kernel.prod_apply_prod, ProbabilityTheory.Kernel.zero_prod, MeasurableEquiv.piFinSuccAbove_symm_apply, ProbabilityTheory.indepFun_iff_charFunDual_prod, ProbabilityTheory.integrable_stieltjesOfMeasurableRat, ProbabilityTheory.Kernel.IsSFiniteKernel.swapRight, ProbabilityTheory.Kernel.traj_eq_prod, MeasurableEquiv.piFinSuccAbove_apply, opensMeasurableSpace, MeasureTheory.quasiMeasurePreserving_inv_mul_swap, MeasureTheory.measurePreserving_fst, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_condDistrib_prod_condDistrib, measurable_dist

Theorems

NameKindAssumesProvesValidatesDepends On
instMeasurableSingletonClass πŸ“–mathematicalβ€”MeasurableSingletonClass
instMeasurableSpace
β€”MeasurableSet.prod
MeasurableSet.singleton
Set.singleton_prod_singleton

Quot

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
1 mathmath: measurable_quot_mk

Quotient

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
24 mathmath: MeasureTheory.IsFundamentalDomain.quotientMeasureEqMeasurePreimage_of_zero, MeasureTheory.instSigmaFiniteQuotientOrbitRelOfHasFundamentalDomainOfQuotientMeasureEqMeasurePreimageVolume, MeasureTheory.instSigmaFiniteAddQuotientOrbitRelInstMeasurableSpaceToMeasurableSpace, MeasureTheory.IsAddFundamentalDomain.addQuotientMeasure_eq, MeasureTheory.IsFundamentalDomain.quotientMeasure_eq, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.addProjection_respects_measure', MeasureTheory.QuotientMeasureEqMeasurePreimage.sigmaFiniteQuotient, MeasureTheory.IsAddFundamentalDomain.measurePreserving_add_quotient_mk, MeasureTheory.QuotientMeasureEqMeasurePreimage.projection_respects_measure', MeasureTheory.QuotientMeasureEqMeasurePreimage.isFiniteMeasure_quotient, measurable_from_quotient, MeasureTheory.IsAddFundamentalDomain.addQuotientMeasureEqMeasurePreimage_of_zero, measurable_quotient_mk', MeasureTheory.IsAddFundamentalDomain.addQuotientMeasureEqMeasurePreimage_addQuotientMeasure, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.isFiniteMeasure_quotient, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.sigmaFiniteQuotient, MeasureTheory.IsFundamentalDomain.projection_respects_measure, MeasureTheory.IsFundamentalDomain.quotientMeasureEqMeasurePreimage_quotientMeasure, measurableSet_quotient, MeasureTheory.IsAddFundamentalDomain.addProjection_respects_measure, instDiscreteMeasurableSpace, MeasureTheory.IsFundamentalDomain.measurePreserving_quotient_mk, measurable_quotient_mk'', borelSpace

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteMeasurableSpace πŸ“–mathematicalβ€”DiscreteMeasurableSpace
instMeasurableSpace
β€”measurableSet_quotient
MeasurableSet.of_discrete

QuotientAddGroup

Definitions

NameCategoryTheorems
measurableSpace πŸ“–CompOp
30 mathmath: AddCircle.volume_eq_smul_haarAddCircle, AddCircle.isAddFundamentalDomain_of_ae_ball, AddCircle.integral_haarAddCircle, measurableVAdd, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.addInvariantMeasure_quotient, orthonormal_fourier, MeasureTheory.memLp_haarAddCircle_iff, Polynomial.toAddCircle.integrable, hasSum_fourier_series_L2, measurable_from_quotient, AddCircle.instIsProbabilityMeasureRealHaarAddCircle, fourierCoeff_toLp, coe_fourierBasis, measurable_coe, instDiscreteMeasurableSpace, UnitAddCircle.measurePreserving_mk, span_fourierLp_closure_eq_top, MeasureTheory.MemLp.haarAddCircle, AddCircle.measurePreserving_mk, AddCircle.measurable_mk', hasSum_sq_fourierCoeff, fourierBasis_repr, measurePreserving_quotientAddGroup_mk_of_AddQuotientMeasureEqMeasurePreimage, tsum_sq_fourierCoeff, borelSpace, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.addHaarMeasure_quotient, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.vaddInvariantMeasure_quotient, coeFn_fourierLp, AddCosetSpace.borelSpace, IsFundamentalDomain.AddQuotientMeasureEqMeasurePreimage_vaddAddHaarMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteMeasurableSpace πŸ“–mathematicalβ€”DiscreteMeasurableSpace
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
measurableSpace
β€”Quotient.instDiscreteMeasurableSpace
measurable_coe πŸ“–mathematicalβ€”Measurable
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
measurableSpace
β€”measurable_quotient_mk''
measurable_from_quotient πŸ“–mathematicalβ€”Measurable
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
measurableSpace
β€”measurable_from_quotient

QuotientGroup

Definitions

NameCategoryTheorems
measurableSpace πŸ“–CompOp
11 mathmath: borelSpace, instDiscreteMeasurableSpace, MeasureTheory.QuotientMeasureEqMeasurePreimage.mulInvariantMeasure_quotient, MeasureTheory.QuotientMeasureEqMeasurePreimage.haarMeasure_quotient, measurableSMul, MeasureTheory.QuotientMeasureEqMeasurePreimage.smulInvariantMeasure_quotient, IsFundamentalDomain.QuotientMeasureEqMeasurePreimage_smulHaarMeasure, measurable_coe, CosetSpace.borelSpace, measurable_from_quotient, measurePreserving_quotientGroup_mk_of_QuotientMeasureEqMeasurePreimage

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteMeasurableSpace πŸ“–mathematicalβ€”DiscreteMeasurableSpace
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
measurableSpace
β€”Quotient.instDiscreteMeasurableSpace
measurable_coe πŸ“–mathematicalβ€”Measurable
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
measurableSpace
β€”measurable_quotient_mk''
measurable_from_quotient πŸ“–mathematicalβ€”Measurable
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
measurableSpace
β€”measurable_from_quotient

Set

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
27 mathmath: ProbabilityTheory.setBernoulli_one, ProbabilityTheory.setBernoulli_singleton, ProbabilityTheory.setBernoulli_apply', MeasurableSet.setOf_finite, measurable_encard, measurable_setOf, MeasurableSet.setOf_infinite, measurable_set_iff, ProbabilityTheory.setBernoulli_zero, ProbabilityTheory.measurable_countablePartitionSet, measurable_set_mem, measurableSet_mem, measurable_compl, measurable_set_notMem, MeasurableEquiv.coe_setOf, MeasurableEquiv.setOf_symm_apply, instMeasurableSingletonClass, ProbabilityTheory.instIsProbabilityMeasureSetSetBernoulli, ProbabilityTheory.setBernoulli_ae_subset, ProbabilityTheory.measurable_partitionFiltration_memPartitionSet, measurableSet_notMem, MeasurableEquiv.setOf_apply, ProbabilityTheory.setBernoulli_apply, ProbabilityTheory.measurable_countableFiltration_countablePartitionSet, ProbabilityTheory.measurable_memPartitionSet, ProbabilityTheory.setBernoulli_eq_map, measurable_ncard

Theorems

NameKindAssumesProvesValidatesDepends On
instMeasurableSingletonClass πŸ“–mathematicalβ€”MeasurableSingletonClass
Set
instMeasurableSpace
β€”Pi.instMeasurableSingletonClass
Prop.instMeasurableSingletonClass
measurable_restrict πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Elem
Set
instMembership
restrict
β€”measurable_pi_lambda
measurable_pi_apply
measurable_restrict_apply πŸ“–mathematicalMeasurableElem
Subtype.instMeasurableSpace
Set
instMembership
restrict
β€”Measurable.comp
measurable_subtype_coe
measurable_restrictβ‚‚ πŸ“–mathematicalSet
instHasSubset
Measurable
MeasurableSpace.pi
Elem
instMembership
restrictβ‚‚
β€”measurable_pi_lambda
measurable_pi_apply
measurable_restrictβ‚‚_apply πŸ“–mathematicalSet
instHasSubset
Measurable
Elem
Subtype.instMeasurableSpace
instMembership
restrictβ‚‚β€”Measurable.comp
measurable_inclusion

Sigma

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOpβ€”

Subtype

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
74 mathmath: measurable_subtype_coe, MeasurableSpace.Subtype.separatesPoints, volume_set_coe_def, ProbabilityTheory.unitInterval.cdf_eq_real, MeasureTheory.Measure.measure_subtype_coe_le_comap, MeasurableSet.standardBorel, unitInterval.coe_symmMeasurableEquiv, MeasureTheory.Measure.toSphere_real_apply_univ, Submonoid.instMeasurableSMul, opensMeasurableSpace, unitInterval.symmMeasurableEquiv_apply, Measurable.subtype_mk, aemeasurable_restrict_iff_comap_subtype, measurableEmbedding_sigmoid, measurableEmbedding_sigmoid_comp_embeddingReal, MeasureTheory.exists_subset_real_measurableEquiv, MeasureTheory.Measure.toSphere_apply_univ, MeasurableEmbedding.equivRange_apply, MeasureTheory.measurableEmbedding_of_fderivWithin, MeasureTheory.Measure.instIsFiniteMeasureElemSphereOfNatRealToSphere, MeasurableEmbedding.measurable_rangeSplitting, unitInterval.measurable_symm, MeasureTheory.lintegral_subtype_comap, MeasureTheory.integrableOn_iff_comap_subtypeVal, MeasurableSpace.Subtype.countablySeparated, MeasurableSet.exists_measurable_proj, AddSubgroup.instMeasurableVAdd, MeasurableSpace.CountablySeparated.subtype_iff, comap_subtype_coe_apply, unitInterval.symmMeasurableEquiv_symm_apply, ContinuousOn.measurableEmbedding, ae_restrict_iff_subtype, MeasureTheory.measurableEquiv_range_coe_nat_of_infinite_of_countable, MeasureTheory.Measure.measurePreserving_homeomorphUnitSphereProd, MeasureTheory.Measure.instSigmaFiniteElemRealIoiOfNatVolumeIoiPow, AddCircle.measurePreserving_equivIoc, MeasurableSpace.instCountablyGeneratedSubtype, instBorelSpaceSubtypeMemOpens, Set.measurable_restrict_apply, MeasureTheory.Measure.toSphereBallBound_mul_measureReal_unitBall_le_toSphere_ball, MeasureTheory.measurePreserving_subtype_coe, MeasureTheory.setLIntegral_subtype, Subgroup.instMeasurableSMul, MeasureTheory.integral_subtype_comap, Measurable.measurableSet_preimage_iff_preimage_val, Measurable.rangeFactorization, MeasureTheory.locallyIntegrable_comap, MeasureTheory.exists_nat_measurableEquiv_range_coe_fin_of_finite, MeasurableSpace.measurableEquiv_nat_bool_of_countablyGenerated, MeasureTheory.restrict_map_withDensity_abs_det_fderiv_eq_addHaar, MeasurableEmbedding.equivRange_symm_apply_mk, MeasurableSpace.countablySeparated_subtype_of_hasCountableSeparatingOn, instCountablySeparatedElemOfHasCountableSeparatingOnIsOpen, Measurable.subtype_map, MeasureTheory.hausdorffMeasure_orthogonalProjection_le, unitInterval.measurableEmbedding_coe, Finset.measurable_restrict_apply, MeasureTheory.Measure.volumeIoiPow_apply_Iio, MeasureTheory.Measure.toSphereBallBound_mul_measure_unitBall_le_toSphere_ball, AddSubmonoid.instMeasurableVAdd, borelSpace, map_comap_subtype_coe, MeasureTheory.Measure.toSphere_eq_zero_iff_finrank, instMeasurableSingletonClass, AEMeasurable.subtype_mk, MeasurableSet.of_subtype_image, MeasureTheory.Measure.toSphere.instIsOpenPosMeasure, LinearMap.exists_map_addHaar_eq_smul_addHaar', MeasureTheory.Measure.toSphere_apply_univ', unitInterval.symm_symmMeasurableEquiv, MeasurableEmbedding.subtype_coe, measurable_inclusion, MeasureTheory.Measure.toSphere_eq_zero_iff, Measurable.measurable_comp_iff_restrict

Theorems

NameKindAssumesProvesValidatesDepends On
instMeasurableSingletonClass πŸ“–mathematicalβ€”MeasurableSingletonClass
instMeasurableSpace
β€”MeasurableSingletonClass.measurableSet_singleton
Set.image_singleton
Set.preimage_image_eq
val_injective

Sum

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
12 mathmath: measurable_inl, Measurable.sumMap, measurableSet_inr_image, measurable_inr, measurableSet_range_inl, measurable_fun_sum, measurableSet_sum_iff, MeasurableSet.inl_image, measurableSet_range_inr, measurableSet_inl_image, MeasurableSet.inr_image, Measurable.sumElim

TProd

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
9 mathmath: MeasureTheory.Measure.sigmaFinite_tprod, measurable_tProd_elim', MeasurableSet.tProd, measurable_tProd_elim, measurable_tProd_mk, MeasurableEquiv.piMeasurableEquivTProd_apply, MeasureTheory.Measure.tprod_cons, MeasureTheory.Measure.tprod_tprod, MeasurableEquiv.piMeasurableEquivTProd_symm_apply

ULift

Definitions

NameCategoryTheorems
instMeasurableSpace πŸ“–CompOp
7 mathmath: measurable_down, measurableSet_preimage_down, measurable_up, instBorelSpace, MeasureTheory.isProbabilityMeasure_comap_down, MeasureTheory.isProbabilityMeasure_map_up, measurableSet_preimage_up

(root)

Definitions

NameCategoryTheorems
MeasurableEq πŸ“–CompData
4 mathmath: instMeasurableEqOfMeasurableSingletonClassOfCountable, instMeasurableEqOfMeasurableSingletonClassOfMeasurableSubβ‚‚, instMeasurableEqOfCanonicallyOrderedAddOfOrderedSubOfMeasurableSubβ‚‚OfMeasurableSingletonClass, instMeasurableEqOfSecondCountableTopologyOfT2Space
measurableAtom πŸ“–CompOp
5 mathmath: mem_measurableAtom_self, MeasurableSet.measurableAtom_of_countable, MeasureTheory.Measure.exists_sum_smul_dirac, measurableAtom_subset, measurableAtom_of_measurableSingletonClass

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_measurableAtom_of_notMem πŸ“–mathematicalSet
Set.instMembership
measurableAtom
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.disjoint_iff_inter_eq_empty
Set.ext
measurableAtom_eq_of_mem
mem_measurableAtom_self
exists_measurable_piecewise πŸ“–β€”MeasurableSet
Measurable
Pairwise
Set.EqOn
Set
Set.instInter
β€”β€”eq_or_ne
Set.Subset.rfl
measurable_iUnionLift
Measurable.comp
measurable_subtype_coe
Measurable.dite
MeasurableSet.iUnion
Set.mem_iUnion
Set.iUnionLift_of_mem
instMeasurableEqOfMeasurableSingletonClassOfCountable πŸ“–mathematicalβ€”MeasurableEqβ€”Set.range_eq_iUnion
Set.iUnion_singleton_eq_range
Set.range_diag
MeasurableSet.of_discrete
MeasurableSingletonClass.toDiscreteMeasurableSpace
Prod.instMeasurableSingletonClass
instCountableProd
instMeasurableSingletonClassOfMeasurableEq πŸ“–mathematicalβ€”MeasurableSingletonClassβ€”Measurable.eq
measurable_id'
measurable_const
measurableAtom_eq_of_mem πŸ“–β€”Set
Set.instMembership
measurableAtom
β€”β€”subset_antisymm
Set.instAntisymmSubset
measurableAtom_subset_of_mem
MeasurableSet.compl
measurableAtom_of_measurableSingletonClass πŸ“–mathematicalβ€”measurableAtom
Set
Set.instSingletonSet
β€”Set.Subset.antisymm
measurableAtom_subset
MeasurableSingletonClass.measurableSet_singleton
measurableAtom_subset πŸ“–mathematicalMeasurableSet
Set
Set.instMembership
Set.instHasSubset
measurableAtom
β€”Set.iInterβ‚‚_subset_of_subset
Set.iInter_congr_Prop
Set.iInter_true
measurableAtom_subset_of_mem πŸ“–mathematicalSet
Set.instMembership
measurableAtom
Set.instHasSubsetβ€”β€”
measurableSet_eq_fun πŸ“–mathematicalMeasurableMeasurableSet
setOf
β€”MeasurableSet.preimage
MeasurableEq.measurableSet_diagonal
Measurable.prodMk
measurableSet_inl_image πŸ“–mathematicalβ€”MeasurableSet
Sum.instMeasurableSpace
Set.image
β€”Function.Injective.preimage_image
Sum.inl_injective
Set.preimage_inr_image_inl
measurableSet_inr_image πŸ“–mathematicalβ€”MeasurableSet
Sum.instMeasurableSpace
Set.image
β€”Set.preimage_inl_image_inr
Function.Injective.preimage_image
Sum.inr_injective
measurableSet_mem πŸ“–mathematicalβ€”MeasurableSet
Set
Set.instMeasurableSpace
setOf
Set.instMembership
β€”measurableSet_setOf
measurable_set_mem
measurableSet_notMem πŸ“–mathematicalβ€”MeasurableSet
Set
Set.instMeasurableSpace
setOf
Set.instMembership
β€”measurableSet_setOf
measurable_set_notMem
measurableSet_pi πŸ“–mathematicalβ€”MeasurableSet
MeasurableSpace.pi
Set.pi
Set
Set.instEmptyCollection
β€”Set.eq_empty_or_nonempty
measurableSet_pi_of_nonempty
measurableSet_pi_of_nonempty πŸ“–mathematicalSet.Nonempty
Set.pi
MeasurableSet
MeasurableSpace.pi
β€”Set.update_preimage_pi
measurable_update
MeasurableSet.pi
measurableSet_preimage_down πŸ“–mathematicalβ€”MeasurableSet
ULift.instMeasurableSpace
Set.preimage
β€”β€”
measurableSet_preimage_up πŸ“–mathematicalβ€”MeasurableSet
Set.preimage
ULift.instMeasurableSpace
β€”β€”
measurableSet_prod πŸ“–mathematicalβ€”MeasurableSet
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
Set.instEmptyCollection
β€”Set.eq_empty_or_nonempty
Set.prod_eq_empty_iff
measurableSet_prod_of_nonempty
Set.prod_nonempty_iff
measurableSet_prod_of_nonempty πŸ“–mathematicalSet.Nonempty
SProd.sprod
Set
Set.instSProd
MeasurableSet
Prod.instMeasurableSpace
β€”measurable_prodMk_right
measurable_prodMk_left
Set.mk_preimage_prod_left
Set.mk_preimage_prod_right
MeasurableSet.prod
measurableSet_quotient πŸ“–mathematicalβ€”MeasurableSet
Quotient.instMeasurableSpace
Set.preimage
Quotient.mk''
β€”β€”
measurableSet_range_inl πŸ“–mathematicalβ€”MeasurableSet
Sum.instMeasurableSpace
Set.range
β€”Set.image_univ
MeasurableSet.inl_image
MeasurableSet.univ
measurableSet_range_inr πŸ“–mathematicalβ€”MeasurableSet
Sum.instMeasurableSpace
Set.range
β€”Set.image_univ
MeasurableSet.inr_image
MeasurableSet.univ
measurableSet_setOf πŸ“–mathematicalβ€”MeasurableSet
setOf
Measurable
Prop.instMeasurableSpace
β€”measurable_to_prop
Set.preimage_singleton_true
MeasurableSingletonClass.measurableSet_singleton
Prop.instMeasurableSingletonClass
measurableSet_sum_iff πŸ“–mathematicalβ€”MeasurableSet
Sum.instMeasurableSpace
Set.preimage
β€”β€”
measurableSet_swap_iff πŸ“–mathematicalβ€”MeasurableSet
Prod.instMeasurableSpace
Set.preimage
β€”measurable_swap
measurable_compl πŸ“–mathematicalβ€”Measurable
Set
Set.instMeasurableSpace
Compl.compl
Set.instCompl
β€”measurable_set_iff
measurable_set_notMem
measurable_curry πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
β€”measurable_pi_lambda
measurable_pi_apply
measurable_down πŸ“–mathematicalβ€”Measurable
ULift.instMeasurableSpace
β€”β€”
measurable_eq_mp πŸ“–mathematicalβ€”Measurableβ€”measurable_id
measurable_equivCurry πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.curry
β€”measurable_curry
measurable_equivCurry_symm πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.curry
β€”measurable_uncurry
measurable_find πŸ“–mathematicalMeasurableSet
setOf
Measurable
Nat.instMeasurableSpace
Nat.find
β€”measurable_to_nat
preimage_find_eq_disjointed
MeasurableSet.disjointed
measurable_findGreatest πŸ“–mathematicalMeasurableSet
setOf
Measurable
Nat.instMeasurableSpace
Nat.findGreatest
β€”measurable_findGreatest'
Set.setOf_forall
Set.iInter_congr_Prop
MeasurableSet.inter
MeasurableSet.const
MeasurableSet.iInter
Prop.countable
instCountableNat
MeasurableSet.compl
measurable_findGreatest' πŸ“–mathematicalMeasurableSet
setOf
Nat.findGreatest
Measurable
Nat.instMeasurableSpace
β€”measurable_to_nat
Nat.findGreatest_le
measurable_from_nat πŸ“–mathematicalβ€”Measurable
Nat.instMeasurableSpace
β€”measurable_from_top
measurable_from_prod_countable' πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”measurable_from_prod_countable_left'
measurable_from_prod_countable_left πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”measurable_from_prod_countable_left'
measurableAtom_of_measurableSingletonClass
measurable_from_prod_countable_left' πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”Set.ext
mem_measurableAtom_self
MeasurableSet.iUnion
MeasurableSet.prod
MeasurableSet.measurableAtom_of_countable
measurable_from_prod_countable_right πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”measurable_from_prod_countable_right'
measurableAtom_of_measurableSingletonClass
measurable_from_prod_countable_right' πŸ“–mathematicalMeasurableProd.instMeasurableSpaceβ€”Measurable.comp
measurable_from_prod_countable_left'
measurable_swap
measurable_from_quotient πŸ“–mathematicalβ€”Measurable
Quotient.instMeasurableSpace
Quotient.mk''
β€”β€”
measurable_fst πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
β€”Measurable.of_comap_le
le_sup_left
measurable_fun_prod πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
β€”Measurable.comp
measurable_fst
measurable_snd
Measurable.prod
measurable_fun_sum πŸ“–mathematicalMeasurableSum.instMeasurableSpaceβ€”Measurable.of_comap_le
le_inf
MeasurableSpace.comap_le_iff_le_map
measurable_iUnionLift πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
Set.iUnion
MeasurableSet
Measurable
Set.Elem
Subtype.instMeasurableSpace
Set.iUnionLiftβ€”Set.subset_iUnion
Set.preimage_iUnionLift
MeasurableSet.preimage
MeasurableSet.iUnion
MeasurableSet.image_inclusion
measurable_inclusion
measurable_inclusion πŸ“–mathematicalSet
Set.instHasSubset
Measurable
Set.Elem
Subtype.instMeasurableSpace
Set.instMembership
Set.inclusion
β€”Measurable.subtype_map
measurable_id
measurable_inl πŸ“–mathematicalβ€”Measurable
Sum.instMeasurableSpace
β€”Measurable.of_le_map
inf_le_left
measurable_inr πŸ“–mathematicalβ€”Measurable
Sum.instMeasurableSpace
β€”Measurable.of_le_map
inf_le_right
measurable_liftCover πŸ“–mathematicalMeasurableSet
Measurable
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.iUnion
Set.univ
Set.liftCoverβ€”Set.preimage_liftCover
MeasurableSet.iUnion
MeasurableSet.subtype_image
measurable_mem πŸ“–mathematicalβ€”Measurable
Prop.instMeasurableSpace
Set
Set.instMembership
MeasurableSet
β€”measurableSet_setOf
measurable_of_measurable_on_compl_finite πŸ“–β€”Measurable
Set.Elem
Compl.compl
Set
Set.instCompl
Subtype.instMeasurableSpace
Set.instMembership
Set.restrict
β€”β€”Set.Finite.to_subtype
measurable_of_restrict_of_restrict_compl
Set.Finite.measurableSet
measurable_of_finite
Subtype.instMeasurableSingletonClass
measurable_of_measurable_on_compl_singleton πŸ“–β€”Measurable
Set.Elem
setOf
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.restrict
β€”β€”measurable_of_measurable_on_compl_finite
Set.finite_singleton
measurable_of_measurable_union_cover πŸ“–β€”MeasurableSet
Set
Set.instHasSubset
Set.univ
Set.instUnion
Measurable
Set.Elem
Subtype.instMeasurableSpace
Set.instMembership
β€”β€”MeasurableSet.of_union_cover
measurable_of_restrict_of_restrict_compl πŸ“–β€”MeasurableSet
Measurable
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.restrict
Compl.compl
Set.instCompl
β€”β€”measurable_of_measurable_union_cover
MeasurableSet.compl
Eq.ge
Set.union_compl_self
measurable_piCongrLeft πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.piCongrLeft
β€”measurable_pi_iff
Equiv.apply_symm_apply
Equiv.piCongrLeft_apply_eq_cast
Measurable.eq_mp
measurable_pi_apply
measurable_piCurry πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.piCurry
β€”measurable_sigmaCurry
measurable_piCurry_symm πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.piCurry
β€”measurable_sigmaUncurry
measurable_piEquivPiSubtypeProd πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Prod.instMeasurableSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.piEquivPiSubtypeProd
β€”Measurable.prodMk
measurable_pi_iff
measurable_pi_apply
measurable_piEquivPiSubtypeProd_symm πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
MeasurableSpace.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.piEquivPiSubtypeProd
β€”measurable_pi_iff
measurable_pi_apply
Measurable.comp
measurable_fst
measurable_snd
measurable_pi_apply πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
β€”measurable_pi_iff
measurable_id
measurable_pi_iff πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
β€”MeasurableSpace.comap_iSup
MeasurableSpace.comap_comp
measurable_pi_lambda πŸ“–mathematicalMeasurableMeasurableSpace.piβ€”measurable_pi_iff
measurable_prodMk_left πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
β€”Measurable.prodMk
measurable_const
measurable_id
measurable_prodMk_right πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
β€”Measurable.prodMk
measurable_id
measurable_const
measurable_quot_mk πŸ“–mathematicalβ€”Measurable
Quot.instMeasurableSpace
β€”β€”
measurable_quotient_mk' πŸ“–mathematicalβ€”Measurable
Quotient.instMeasurableSpace
β€”β€”
measurable_quotient_mk'' πŸ“–mathematicalβ€”Measurable
Quotient.instMeasurableSpace
Quotient.mk''
β€”β€”
measurable_setOf πŸ“–mathematicalβ€”Measurable
Set
MeasurableSpace.pi
Prop.instMeasurableSpace
Set.instMeasurableSpace
setOf
β€”measurable_id
measurable_set_iff πŸ“–mathematicalβ€”Measurable
Set
Set.instMeasurableSpace
Prop.instMeasurableSpace
Set.instMembership
β€”measurable_pi_iff
measurable_set_mem πŸ“–mathematicalβ€”Measurable
Set
Set.instMeasurableSpace
Prop.instMeasurableSpace
Set.instMembership
β€”measurable_pi_apply
measurable_set_notMem πŸ“–mathematicalβ€”Measurable
Set
Set.instMeasurableSpace
Prop.instMeasurableSpace
Set.instMembership
β€”Measurable.comp
Measurable.of_discrete
instDiscreteMeasurableSpace
measurable_set_mem
measurable_sigmaCurry πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Sigma.curry
β€”measurable_pi_lambda
measurable_pi_apply
measurable_sigmaUncurry πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Sigma.uncurry
β€”measurable_pi_lambda
Measurable.fun_comp
measurable_pi_apply
measurable_snd πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
β€”Measurable.of_comap_le
le_sup_right
measurable_subtype_coe πŸ“–mathematicalβ€”Measurable
Subtype.instMeasurableSpace
β€”MeasurableSpace.le_map_comap
measurable_swap πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
β€”Measurable.prod
measurable_snd
measurable_fst
measurable_swap_iff πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
β€”Measurable.comp
measurable_swap
measurable_tProd_elim πŸ“–mathematicalβ€”Measurable
List.TProd
TProd.instMeasurableSpace
List.TProd.elim
β€”List.TProd.elim_self
measurable_fst
List.TProd.elim_of_ne
Measurable.comp
measurable_snd
measurable_tProd_elim' πŸ“–mathematicalβ€”Measurable
List.TProd
TProd.instMeasurableSpace
MeasurableSpace.pi
List.TProd.elim'
β€”measurable_pi_lambda
measurable_tProd_elim
measurable_tProd_mk πŸ“–mathematicalβ€”Measurable
List.TProd
MeasurableSpace.pi
TProd.instMeasurableSpace
β€”measurable_const
Measurable.prodMk
measurable_pi_apply
measurable_to_bool πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
Measurable
Bool.instMeasurableSpace
β€”measurable_to_countable'
Bool.countable
Set.preimage_compl
Bool.compl_singleton
MeasurableSet.compl
measurable_to_countable πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
Measurableβ€”Set.biUnion_preimage_singleton
MeasurableSet.iUnion
Prop.countable
Set.preimage_singleton_eq_empty
measurable_to_countable' πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
Measurableβ€”measurable_to_countable
measurable_to_nat πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
Measurable
Nat.instMeasurableSpace
β€”measurable_to_countable
instCountableNat
measurable_to_prop πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
Measurable
Prop.instMeasurableSpace
β€”measurable_to_countable'
Prop.countable'
Set.preimage_singleton_true
Set.preimage_singleton_false
Prop.compl_singleton
MeasurableSet.compl
measurable_uncurry πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
β€”measurable_pi_lambda
Measurable.fun_comp
measurable_pi_apply
measurable_uniqueElim πŸ“–mathematicalβ€”Measurable
Unique.instInhabited
MeasurableSpace.pi
uniqueElim
β€”measurable_id
measurable_unit πŸ“–mathematicalβ€”Measurable
PUnit.instMeasurableSpace
β€”measurable_from_top
measurable_up πŸ“–mathematicalβ€”Measurable
ULift.instMeasurableSpace
β€”β€”
measurable_update πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Function.update
β€”Measurable.comp
measurable_update'
measurable_prodMk_left
measurable_update' πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
MeasurableSpace.pi
Function.update
β€”measurable_pi_iff
measurable_snd
measurable_fst
measurable_updateFinset πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Finset
SetLike.instMembership
Finset.instSetLike
Function.updateFinset
β€”Measurable.comp
measurable_updateFinset'
measurable_prodMk_left
measurable_updateFinset' πŸ“–mathematicalβ€”Measurable
Prod.instMeasurableSpace
MeasurableSpace.pi
Finset
SetLike.instMembership
Finset.instSetLike
Function.updateFinset
β€”β€”
measurable_updateFinset_left πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Function.updateFinset
β€”Measurable.comp
measurable_updateFinset'
measurable_prodMk_right
measurable_update_left πŸ“–mathematicalβ€”Measurable
MeasurableSpace.pi
Function.update
β€”Measurable.comp
measurable_update'
measurable_prodMk_right
mem_measurableAtom_self πŸ“–mathematicalβ€”Set
Set.instMembership
measurableAtom
β€”β€”
mem_of_mem_measurableAtom πŸ“–β€”Set
Set.instMembership
measurableAtom
MeasurableSet
β€”β€”β€”

---

← Back to Index