Documentation

Mathlib.MeasureTheory.MeasurableSpace.Constructions

Constructions for measurable spaces and functions #

This file provides several ways to construct new measurable spaces and functions from old ones: Quotient, Subtype, Prod, Pi, etc.

theorem measurable_to_countable {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [Countable α] [MeasurableSpace β] {f : βα} (h : ∀ (y : β), MeasurableSet (f ⁻¹' {f y})) :
theorem measurable_to_countable' {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [Countable α] [MeasurableSpace β] {f : βα} (h : ∀ (x : α), MeasurableSet (f ⁻¹' {x})) :
theorem ENat.measurable_iff {α : Type u_6} [MeasurableSpace α] {f : αℕ∞} :
Measurable f ∀ (n : ), MeasurableSet (f ⁻¹' {n})
theorem measurable_unit {α : Type u_1} [MeasurableSpace α] (f : Unitα) :
theorem measurable_from_nat {α : Type u_1} { : MeasurableSpace α} {f : α} :
theorem measurable_to_nat {α : Type u_1} { : MeasurableSpace α} {f : α} :
(∀ (y : α), MeasurableSet (f ⁻¹' {f y}))Measurable f
theorem measurable_to_bool {α : Type u_1} { : MeasurableSpace α} {f : αBool} (h : MeasurableSet (f ⁻¹' {true})) :
theorem measurable_to_prop {α : Type u_1} { : MeasurableSpace α} {f : αProp} (h : MeasurableSet (f ⁻¹' {True})) :
theorem measurable_findGreatest' {α : Type u_1} { : MeasurableSpace α} {p : αProp} [(x : α) → DecidablePred (p x)] {N : } (hN : kN, MeasurableSet {x : α | Nat.findGreatest (p x) N = k}) :
Measurable fun (x : α) => Nat.findGreatest (p x) N
theorem measurable_findGreatest {α : Type u_1} { : MeasurableSpace α} {p : αProp} [(x : α) → DecidablePred (p x)] {N : } (hN : kN, MeasurableSet {x : α | p x k}) :
Measurable fun (x : α) => Nat.findGreatest (p x) N
@[simp]
theorem MeasurableSet.disjointed {α : Type u_1} { : MeasurableSpace α} {f : Set α} (h : ∀ (i : ), MeasurableSet (f i)) (n : ) :
theorem measurable_find {α : Type u_1} { : MeasurableSpace α} {p : αProp} [(x : α) → DecidablePred (p x)] (hp : ∀ (x : α), ∃ (N : ), p x N) (hm : ∀ (k : ), MeasurableSet {x : α | p x k}) :
Measurable fun (x : α) => Nat.find
instance Quot.instMeasurableSpace {α : Type u_6} {r : ααProp} [m : MeasurableSpace α] :
Equations
    theorem measurable_quot_mk {α : Type u_1} [MeasurableSpace α] {r : ααProp} :
    instance Subtype.instMeasurableSpace {α : Type u_6} {p : αProp} [m : MeasurableSpace α] :
    Equations
      theorem Measurable.subtype_coe {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {p : βProp} {f : αSubtype p} (hf : Measurable f) :
      Measurable fun (a : α) => (f a)
      theorem Measurable.subtype_val {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {p : βProp} {f : αSubtype p} (hf : Measurable f) :
      Measurable fun (a : α) => (f a)

      Alias of Measurable.subtype_coe.

      theorem Measurable.subtype_mk {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {p : βProp} {f : αβ} (hf : Measurable f) {h : ∀ (x : α), p (f x)} :
      Measurable fun (x : α) => f x,
      theorem Measurable.rangeFactorization {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {f : αβ} (hf : Measurable f) :
      theorem Measurable.subtype_map {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {f : αβ} {p : αProp} {q : βProp} (hf : Measurable f) (hpq : ∀ (x : α), p xq (f x)) :
      theorem measurable_inclusion {α : Type u_1} {m : MeasurableSpace α} {s t : Set α} (h : s t) :
      theorem MeasurableSet.image_inclusion' {α : Type u_1} {m : MeasurableSpace α} {s t : Set α} (h : s t) {u : Set s} (hs : MeasurableSet (Subtype.val ⁻¹' s)) (hu : MeasurableSet u) :
      theorem MeasurableSet.image_inclusion {α : Type u_1} {m : MeasurableSpace α} {s t : Set α} (h : s t) {u : Set s} (hs : MeasurableSet s) (hu : MeasurableSet u) :
      theorem measurable_of_measurable_union_cover {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {f : αβ} (s t : Set α) (hs : MeasurableSet s) (ht : MeasurableSet t) (h : Set.univ s t) (hc : Measurable fun (a : s) => f a) (hd : Measurable fun (a : t) => f a) :
      theorem measurable_of_restrict_of_restrict_compl {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {f : αβ} {s : Set α} (hs : MeasurableSet s) (h₁ : Measurable (s.restrict f)) (h₂ : Measurable (s.restrict f)) :
      theorem Measurable.dite {α : Type u_1} {β : Type u_2} {s : Set α} {m : MeasurableSpace α} { : MeasurableSpace β} [(x : α) → Decidable (x s)] {f : sβ} (hf : Measurable f) {g : sβ} (hg : Measurable g) (hs : MeasurableSet s) :
      Measurable fun (x : α) => if hx : x s then f x, hx else g x, hx
      theorem measurable_of_measurable_on_compl_finite {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSingletonClass α] {f : αβ} (s : Set α) (hs : s.Finite) (hf : Measurable (s.restrict f)) :
      theorem measurable_of_measurable_on_compl_singleton {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSingletonClass α] {f : αβ} (a : α) (hf : Measurable ({x : α | x a}.restrict f)) :
      def measurableAtom {β : Type u_2} [MeasurableSpace β] (x : β) :
      Set β

      The measurable atom of x is the intersection of all the measurable sets containing x. It is measurable when the space is countable (or more generally when the measurable space is countably generated).

      Equations
        Instances For
          @[simp]
          theorem mem_measurableAtom_self {β : Type u_2} [MeasurableSpace β] (x : β) :
          theorem mem_of_mem_measurableAtom {β : Type u_2} [MeasurableSpace β] {x y : β} (h : y measurableAtom x) {s : Set β} (hs : MeasurableSet s) (hxs : x s) :
          y s
          theorem measurableAtom_subset {β : Type u_2} [MeasurableSpace β] {s : Set β} {x : β} (hs : MeasurableSet s) (hx : x s) :

          There is in fact equality: see measurableAtom_eq_of_mem.

          def MeasurableSpace.prod {α : Type u_6} {β : Type u_7} (m₁ : MeasurableSpace α) (m₂ : MeasurableSpace β) :

          A MeasurableSpace structure on the product of two measurable spaces.

          Equations
            Instances For
              instance Prod.instMeasurableSpace {α : Type u_6} {β : Type u_7} [m₁ : MeasurableSpace α] [m₂ : MeasurableSpace β] :
              Equations
                theorem measurable_fst {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} :
                theorem measurable_snd {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} :
                theorem Measurable.fst {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {f : αβ × γ} (hf : Measurable f) :
                Measurable fun (a : α) => (f a).1
                theorem Measurable.snd {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {f : αβ × γ} (hf : Measurable f) :
                Measurable fun (a : α) => (f a).2
                theorem Measurable.prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {f : αβ × γ} (hf₁ : Measurable fun (a : α) => (f a).1) (hf₂ : Measurable fun (a : α) => (f a).2) :
                theorem Measurable.prodMk {α : Type u_1} {m : MeasurableSpace α} {β : Type u_6} {γ : Type u_7} {x✝ : MeasurableSpace β} {x✝¹ : MeasurableSpace γ} {f : αβ} {g : αγ} (hf : Measurable f) (hg : Measurable g) :
                Measurable fun (a : α) => (f a, g a)
                theorem Measurable.prodMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasurableSpace δ] {f : αβ} {g : γδ} (hf : Measurable f) (hg : Measurable g) :
                theorem measurable_prodMk_left {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {x : α} :
                theorem measurable_prodMk_right {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {y : β} :
                Measurable fun (x : α) => (x, y)
                theorem Measurable.of_uncurry_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {f : αβγ} (hf : Measurable (Function.uncurry f)) {x : α} :
                theorem Measurable.of_uncurry_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {f : αβγ} (hf : Measurable (Function.uncurry f)) {y : β} :
                Measurable fun (x : α) => f x y
                theorem measurable_fun_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {f : αβ × γ} :
                Measurable f (Measurable fun (a : α) => (f a).1) Measurable fun (a : α) => (f a).2
                theorem measurable_swap_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} {x✝ : MeasurableSpace γ} {f : α × βγ} :
                theorem MeasurableSet.prod {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {s : Set α} {t : Set β} (hs : MeasurableSet s) (ht : MeasurableSet t) :
                theorem measurableSet_prod_of_nonempty {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {s : Set α} {t : Set β} (h : (s ×ˢ t).Nonempty) :
                theorem measurableSet_prod {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {s : Set α} {t : Set β} :
                theorem measurable_from_prod_countable_left' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [Countable β] {f : α × βγ} (hf : ∀ (y : β), Measurable fun (x : α) => f (x, y)) (h'f : ∀ (y y' : β) (x : α), y' measurableAtom yf (x, y') = f (x, y)) :

                See measurable_from_prod_countable_left for a version where we assume that singletons are measurable instead of reasoning about measurableAtom.

                theorem measurable_from_prod_countable_right' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [Countable α] {f : α × βγ} (hf : ∀ (x : α), Measurable fun (y : β) => f (x, y)) (h'f : ∀ (x x' : α) (y : β), x' measurableAtom xf (x', y) = f (x, y)) :

                See measurable_from_prod_countable_right for a version where we assume that singletons are measurable instead of reasoning about measurableAtom.

                @[deprecated measurable_from_prod_countable_left' (since := "2025-08-17")]
                theorem measurable_from_prod_countable' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [Countable β] {f : α × βγ} (hf : ∀ (y : β), Measurable fun (x : α) => f (x, y)) (h'f : ∀ (y y' : β) (x : α), y' measurableAtom yf (x, y') = f (x, y)) :

                Alias of measurable_from_prod_countable_left'.


                See measurable_from_prod_countable_left for a version where we assume that singletons are measurable instead of reasoning about measurableAtom.

                theorem measurable_from_prod_countable_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [Countable β] [MeasurableSingletonClass β] {f : α × βγ} (hf : ∀ (y : β), Measurable fun (x : α) => f (x, y)) :

                For the version where the first space in the product is countable, see measurable_from_prod_countable_right.

                theorem measurable_from_prod_countable_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [Countable α] [MeasurableSingletonClass α] {f : α × βγ} (hf : ∀ (x : α), Measurable fun (y : β) => f (x, y)) :

                For the version where the second space in the product is countable, see measurable_from_prod_countable_left.

                theorem Measurable.find {α : Type u_1} {β : Type u_2} { : MeasurableSpace β} {x✝ : MeasurableSpace α} {f : αβ} {p : αProp} [(n : ) → DecidablePred (p n)] (hf : ∀ (n : ), Measurable (f n)) (hp : ∀ (n : ), MeasurableSet {x : α | p n x}) (h : ∀ (x : α), ∃ (n : ), p n x) :
                Measurable fun (x : α) => f (Nat.find ) x

                A piecewise function on countably many pieces is measurable if all the data is measurable.

                theorem measurable_iUnionLift {α : Type u_1} {β : Type u_2} {ι : Sort uι} {m : MeasurableSpace α} { : MeasurableSpace β} [Countable ι] {t : ιSet α} {f : (i : ι) → (t i)β} (htf : ∀ (i j : ι) (x : α) (hxi : x t i) (hxj : x t j), f i x, hxi = f j x, hxj) {T : Set α} (hT : T ⋃ (i : ι), t i) (htm : ∀ (i : ι), MeasurableSet (t i)) (hfm : ∀ (i : ι), Measurable (f i)) :
                Measurable (Set.iUnionLift t f htf T hT)

                Let t i be a countable covering of a set T by measurable sets. Let f i : t i → β be a family of functions that agree on the intersections t i ∩ t j. Then the function Set.iUnionLift t f _ _ : T → β, defined as f i ⟨x, hx⟩ for hx : x ∈ t i, is measurable.

                theorem measurable_liftCover {α : Type u_1} {β : Type u_2} {ι : Sort uι} {m : MeasurableSpace α} { : MeasurableSpace β} [Countable ι] (t : ιSet α) (htm : ∀ (i : ι), MeasurableSet (t i)) (f : (i : ι) → (t i)β) (hfm : ∀ (i : ι), Measurable (f i)) (hf : ∀ (i j : ι) (x : α) (hxi : x t i) (hxj : x t j), f i x, hxi = f j x, hxj) (htU : ⋃ (i : ι), t i = Set.univ) :

                Let t i be a countable covering of α by measurable sets. Let f i : t i → β be a family of functions that agree on the intersections t i ∩ t j. Then the function Set.liftCover t f _ _, defined as f i ⟨x, hx⟩ for hx : x ∈ t i, is measurable.

                theorem exists_measurable_piecewise {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {ι : Type u_6} [Countable ι] [Nonempty ι] (t : ιSet α) (t_meas : ∀ (n : ι), MeasurableSet (t n)) (g : ιαβ) (hg : ∀ (n : ι), Measurable (g n)) (ht : Pairwise fun (i j : ι) => Set.EqOn (g i) (g j) (t i t j)) :
                ∃ (f : αβ), Measurable f ∀ (n : ι), Set.EqOn f (g n) (t n)

                Let t i be a nonempty countable family of measurable sets in α. Let g i : α → β be a family of measurable functions such that g i agrees with g j on t i ∩ t j. Then there exists a measurable function f : α → β that agrees with each g i on t i.

                We only need the assumption [Nonempty ι] to prove [Nonempty (α → β)].

                instance MeasurableSpace.pi {δ : Type u_4} {X : δType u_6} [m : (a : δ) → MeasurableSpace (X a)] :
                MeasurableSpace ((a : δ) → X a)
                Equations
                  theorem measurable_pi_iff {α : Type u_1} {δ : Type u_4} {X : δType u_6} [MeasurableSpace α] [(a : δ) → MeasurableSpace (X a)] {g : α(a : δ) → X a} :
                  Measurable g ∀ (a : δ), Measurable fun (x : α) => g x a
                  theorem measurable_pi_apply {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] (a : δ) :
                  Measurable fun (f : (a : δ) → X a) => f a
                  theorem MeasurableSpace.comap_le_comap_pi {β : Type u_2} {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {g : (a : δ) → βX a} (a : δ) :
                  MeasurableSpace.comap (g a) inferInstance MeasurableSpace.comap (fun (b : β) (c : δ) => g c b) pi
                  theorem Measurable.eval {α : Type u_1} {δ : Type u_4} {X : δType u_6} [MeasurableSpace α] [(a : δ) → MeasurableSpace (X a)] {a : δ} {g : α(a : δ) → X a} (hg : Measurable g) :
                  Measurable fun (x : α) => g x a
                  theorem measurable_pi_lambda {α : Type u_1} {δ : Type u_4} {X : δType u_6} [MeasurableSpace α] [(a : δ) → MeasurableSpace (X a)] (f : α(a : δ) → X a) (hf : ∀ (a : δ), Measurable fun (c : α) => f c a) :
                  theorem measurable_update' {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {a : δ} [DecidableEq δ] :
                  Measurable fun (p : ((i : δ) → X i) × X a) => Function.update p.1 a p.2

                  The function (f, x) ↦ update f a x : (Π a, X a) × X a → Π a, X a is measurable.

                  theorem measurable_uniqueElim {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] [Unique δ] :
                  theorem measurable_updateFinset' {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] [DecidableEq δ] {s : Finset δ} :
                  Measurable fun (p : ((i : δ) → X i) × ((i : s) → X i)) => Function.updateFinset p.1 s p.2
                  theorem measurable_updateFinset {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] [DecidableEq δ] {s : Finset δ} {x : (i : δ) → X i} :
                  theorem measurable_updateFinset_left {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] [DecidableEq δ] {s : Finset δ} {x : (i : s) → X i} :
                  Measurable fun (x_1 : (i : δ) → X i) => Function.updateFinset x_1 s x
                  theorem measurable_update {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] (f : (a : δ) → X a) {a : δ} [DecidableEq δ] :

                  The function update f a : X a → Π a, X a is always measurable. This doesn't require f to be measurable. This should not be confused with the statement that update f a x is measurable.

                  theorem measurable_update_left {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {a : δ} [DecidableEq δ] {x : X a} :
                  Measurable fun (x_1 : (a : δ) → X a) => Function.update x_1 a x
                  theorem Set.measurable_restrict {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] (s : Set δ) :
                  theorem Set.measurable_restrict₂ {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {s t : Set δ} (hst : s t) :
                  theorem Finset.measurable_restrict {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] (s : Finset δ) :
                  theorem Finset.measurable_restrict₂ {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {s t : Finset δ} (hst : s t) :
                  theorem Set.measurable_restrict_apply {α : Type u_1} {γ : Type u_3} [MeasurableSpace α] [MeasurableSpace γ] (s : Set α) {f : αγ} (hf : Measurable f) :
                  theorem Set.measurable_restrict₂_apply {α : Type u_1} {γ : Type u_3} [MeasurableSpace α] [MeasurableSpace γ] {s t : Set α} (hst : s t) {f : tγ} (hf : Measurable f) :
                  theorem Finset.measurable_restrict_apply {α : Type u_1} {γ : Type u_3} [MeasurableSpace α] [MeasurableSpace γ] (s : Finset α) {f : αγ} (hf : Measurable f) :
                  theorem Finset.measurable_restrict₂_apply {α : Type u_1} {γ : Type u_3} [MeasurableSpace α] [MeasurableSpace γ] {s t : Finset α} (hst : s t) {f : tγ} (hf : Measurable f) :
                  theorem measurable_eq_mp {δ : Type u_4} (X : δType u_6) [(a : δ) → MeasurableSpace (X a)] {i i' : δ} (h : i = i') :
                  theorem Measurable.eq_mp {δ : Type u_4} (X : δType u_6) [(a : δ) → MeasurableSpace (X a)] {β : Type u_7} [MeasurableSpace β] {i i' : δ} (h : i = i') {f : βX i} (hf : Measurable f) :
                  Measurable fun (x : β) => .mp (f x)
                  theorem measurable_piCongrLeft {δ : Type u_4} {δ' : Type u_5} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] (f : δ' δ) :
                  theorem MeasurableSet.pi {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {s : Set δ} {t : (i : δ) → Set (X i)} (hs : s.Countable) (ht : is, MeasurableSet (t i)) :
                  theorem MeasurableSet.univ_pi {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] [Countable δ] {t : (i : δ) → Set (X i)} (ht : ∀ (i : δ), MeasurableSet (t i)) :
                  theorem measurableSet_pi_of_nonempty {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {s : Set δ} {t : (i : δ) → Set (X i)} (hs : s.Countable) (h : (s.pi t).Nonempty) :
                  MeasurableSet (s.pi t) is, MeasurableSet (t i)
                  theorem measurableSet_pi {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] {s : Set δ} {t : (i : δ) → Set (X i)} (hs : s.Countable) :
                  MeasurableSet (s.pi t) (∀ is, MeasurableSet (t i)) s.pi t =
                  instance Pi.instMeasurableSingletonClass {δ : Type u_4} {X : δType u_6} [(a : δ) → MeasurableSpace (X a)] [Countable δ] [∀ (a : δ), MeasurableSingletonClass (X a)] :
                  MeasurableSingletonClass ((a : δ) → X a)
                  theorem measurable_piEquivPiSubtypeProd_symm {δ : Type u_4} (X : δType u_6) [(a : δ) → MeasurableSpace (X a)] (p : δProp) [DecidablePred p] :
                  theorem measurable_piEquivPiSubtypeProd {δ : Type u_4} (X : δType u_6) [(a : δ) → MeasurableSpace (X a)] (p : δProp) [DecidablePred p] :
                  instance TProd.instMeasurableSpace {δ : Type u_4} (X : δType u_6) [(i : δ) → MeasurableSpace (X i)] (l : List δ) :
                  Equations
                    theorem measurable_tProd_mk {δ : Type u_4} {X : δType u_6} [(i : δ) → MeasurableSpace (X i)] (l : List δ) :
                    theorem measurable_tProd_elim {δ : Type u_4} {X : δType u_6} [(i : δ) → MeasurableSpace (X i)] [DecidableEq δ] {l : List δ} {i : δ} (hi : i l) :
                    Measurable fun (v : List.TProd X l) => v.elim hi
                    theorem measurable_tProd_elim' {δ : Type u_4} {X : δType u_6} [(i : δ) → MeasurableSpace (X i)] [DecidableEq δ] {l : List δ} (h : ∀ (i : δ), i l) :
                    theorem MeasurableSet.tProd {δ : Type u_4} {X : δType u_6} [(i : δ) → MeasurableSpace (X i)] (l : List δ) {s : (i : δ) → Set (X i)} (hs : ∀ (i : δ), MeasurableSet (s i)) :
                    instance Sum.instMeasurableSpace {α : Type u_6} {β : Type u_7} [m₁ : MeasurableSpace α] [m₂ : MeasurableSpace β] :
                    Equations
                      theorem measurable_fun_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} {x✝ : MeasurableSpace γ} {f : α βγ} (hl : Measurable (f Sum.inl)) (hr : Measurable (f Sum.inr)) :
                      theorem Measurable.sumElim {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} { : MeasurableSpace β} {x✝ : MeasurableSpace γ} {f : αγ} {g : βγ} (hf : Measurable f) (hg : Measurable g) :
                      theorem Measurable.sumMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {m : MeasurableSpace α} { : MeasurableSpace β} {x✝ : MeasurableSpace γ} {x✝¹ : MeasurableSpace δ} {f : αβ} {g : γδ} (hf : Measurable f) (hg : Measurable g) :
                      @[simp]
                      theorem measurableSet_inl_image {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {s : Set α} :
                      theorem MeasurableSet.inl_image {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {s : Set α} :

                      Alias of the reverse direction of measurableSet_inl_image.

                      @[simp]
                      theorem measurableSet_inr_image {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {s : Set β} :
                      theorem MeasurableSet.inr_image {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} { : MeasurableSpace β} {s : Set β} :

                      Alias of the reverse direction of measurableSet_inr_image.

                      instance Sigma.instMeasurableSpace {α : Type u_7} {β : αType u_6} [m : (a : α) → MeasurableSpace (β a)] :
                      Equations
                        @[simp]
                        theorem measurableSet_setOf {α : Type u_1} [MeasurableSpace α] {p : αProp} :
                        @[simp]
                        theorem measurable_mem {α : Type u_1} {s : Set α} [MeasurableSpace α] :
                        (Measurable fun (x : α) => x s) MeasurableSet s
                        theorem Measurable.setOf {α : Type u_1} [MeasurableSpace α] {p : αProp} :
                        Measurable pMeasurableSet {a : α | p a}

                        Alias of the reverse direction of measurableSet_setOf.

                        theorem MeasurableSet.mem {α : Type u_1} {s : Set α} [MeasurableSpace α] :
                        MeasurableSet sMeasurable fun (x : α) => x s

                        Alias of the reverse direction of measurable_mem.

                        theorem Measurable.not {α : Type u_1} [MeasurableSpace α] {p : αProp} (hp : Measurable p) :
                        Measurable fun (x : α) => ¬p x
                        theorem Measurable.and {α : Type u_1} [MeasurableSpace α] {p q : αProp} (hp : Measurable p) (hq : Measurable q) :
                        Measurable fun (a : α) => p a q a
                        theorem Measurable.or {α : Type u_1} [MeasurableSpace α] {p q : αProp} (hp : Measurable p) (hq : Measurable q) :
                        Measurable fun (a : α) => p a q a
                        theorem Measurable.imp {α : Type u_1} [MeasurableSpace α] {p q : αProp} (hp : Measurable p) (hq : Measurable q) :
                        Measurable fun (a : α) => p aq a
                        theorem Measurable.iff {α : Type u_1} [MeasurableSpace α] {p q : αProp} (hp : Measurable p) (hq : Measurable q) :
                        Measurable fun (a : α) => p a q a
                        theorem Measurable.forall {α : Type u_1} {ι : Sort uι} [MeasurableSpace α] [Countable ι] {p : ιαProp} (hp : ∀ (i : ι), Measurable (p i)) :
                        Measurable fun (a : α) => ∀ (i : ι), p i a
                        theorem Measurable.exists {α : Type u_1} {ι : Sort uι} [MeasurableSpace α] [Countable ι] {p : ιαProp} (hp : ∀ (i : ι), Measurable (p i)) :
                        Measurable fun (a : α) => ∃ (i : ι), p i a
                        theorem Measurable.eq_const {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} [MeasurableSpace β] [MeasurableSingletonClass β] {f : αβ} (hf : Measurable f) (a : β) :
                        Measurable fun (x : α) => f x = a
                        theorem Measurable.const_eq {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} [MeasurableSpace β] [MeasurableSingletonClass β] {f : αβ} (hf : Measurable f) (a : β) :
                        Measurable fun (x : α) => a = f x

                        This instance is useful when talking about Bernoulli sequences of random variables or binomial random graphs.

                        Equations
                          @[simp]
                          theorem measurable_setOf {α : Type u_1} :
                          Measurable fun (p : αProp) => {a : α | p a}
                          theorem measurable_set_iff {α : Type u_1} {β : Type u_2} [MeasurableSpace β] {g : βSet α} :
                          Measurable g ∀ (a : α), Measurable fun (x : β) => a g x
                          theorem measurable_set_mem {α : Type u_1} (a : α) :
                          Measurable fun (s : Set α) => a s
                          theorem measurable_set_notMem {α : Type u_1} (a : α) :
                          Measurable fun (s : Set α) => as
                          theorem measurableSet_mem {α : Type u_1} (a : α) :
                          theorem measurableSet_notMem {α : Type u_1} (a : α) :
                          MeasurableSet {s : Set α | as}
                          theorem measurable_compl {α : Type u_1} :
                          Measurable fun (x : Set α) => x
                          theorem Measurable.subset {α : Type u_1} {β : Type u_2} [MeasurableSpace β] [Countable α] {s t : βSet α} (hs : Measurable s) :
                          Measurable tMeasurable fun (a : β) => s a t a
                          theorem measurable_equivCurry {ι : Type u_6} {κ : Type u_7} {X : Type u_8} [MeasurableSpace X] :
                          Measurable (Equiv.curry ι κ X)
                          theorem measurable_equivCurry_symm {ι : Type u_6} {κ : Type u_7} {X : Type u_8} [MeasurableSpace X] :
                          theorem measurable_sigmaCurry {ι : Type u_6} {κ : ιType u_7} {X : (i : ι) → κ iType u_8} [(i : ι) → (j : κ i) → MeasurableSpace (X i j)] :
                          theorem measurable_sigmaUncurry {ι : Type u_6} {κ : ιType u_7} {X : (i : ι) → κ iType u_8} [(i : ι) → (j : κ i) → MeasurableSpace (X i j)] :
                          theorem measurable_piCurry {ι : Type u_6} {κ : ιType u_7} {X : (i : ι) → κ iType u_8} [(i : ι) → (j : κ i) → MeasurableSpace (X i j)] :
                          theorem measurable_piCurry_symm {ι : Type u_6} {κ : ιType u_7} {X : (i : ι) → κ iType u_8} [(i : ι) → (j : κ i) → MeasurableSpace (X i j)] :
                          class MeasurableEq (α : Type u_1) [MeasurableSpace α] :

                          Typeclass for a measurable space α for which the diagonal of α × α is measurable.

                          Instances
                            theorem measurableSet_eq_fun {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} [MeasurableSpace β] [MeasurableEq β] {f g : αβ} (hf : Measurable f) (hg : Measurable g) :
                            MeasurableSet {x : α | f x = g x}
                            theorem Measurable.eq {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} [MeasurableSpace β] [MeasurableEq β] {f g : αβ} (hf : Measurable f) (hg : Measurable g) :
                            Measurable fun (x : α) => f x = g x